doc_act

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Реклама

  Скачать документ



Российское открытое акционерное общество энергетики и электрификации
«ЕЭС России»

СТАНДАРТ
ОРГАНИЗАЦИИ
ОАО РАО «ЕЭС
РОССИИ»

СТО
17330282.27.140.001-2006

МЕТОДИКИ ОЦЕНКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ
ОСНОВНОГО ОБОРУДОВАНИЯ ГИДРОЭЛЕКТРОСТАНЦИЙ

Книга 2.



Реклама

ПРИЛОЖЕНИЯ «А» - «Ш»

Москва 2008

СОДЕРЖАНИЕ

Приложение А. Методические указания по эксплуатационным энергетическим испытаниям гидроагрегатов. 3

А.1 Общие положения. 3

А.2. Организация испытаний. 5

А.3 Выполнение измерений. 7

А.4. Обработка материалов испытаний. 16

А.5. Определение оптимальной комбинаторной зависимости поворотно-лопастных гидротурбин. 27

Приложение Б. Методические указания по техническому обследованию узлов гидроагрегатов при их повреждениях. 32

Б.1 Общие положения. 32

Б.2 Рабочее колесо и камера рабочего колеса гидротурбины. 33

Б.3 Направляющий подшипник гидротурбины.. 35

Б.4 Маслоприемники. 36

Б.5 Подпятник. 37

Б.6 Направляющие подшипники генератора. 39

Приложение В. Рекомендации по освидетельствованию гидроэнергетического оборудования ГЭС при реконструкции и техническом перевооружении. 41

В.1. Организация освидетельствования. 41

В.2 Перечень документов, оформляемых по результатам освидетельствования. 42

В.3 Объем работ по освидетельствованию основных узлов гидроагрегата. 42

Приложение Г. Контроль металла рабочих колес гидротурбин. 52

Приложение Д. Методические указания по контролю линии валов вертикальных гидроагрегатов. 58

Д.1. Введение. 58

Д.2. Технические требования к технологической последовательности операций по проверке центровки и устранению ее дефектов. 58

Д.3. Технологическая инструкция по проверке центровки и устранению ее дефектов. 59

Приложение Е. Методики проверки геометрической формы и размеров проточной части гидротурбин. 70

Е.1 Общая часть. 70

Е.2 Выбор элементов, подлежащих измерениям.. 71

Е.3. Способы измерения. 75

Приложение Ж. Методические указания по испытаниям системы регулирования гидротурбин. 82

Ж.1. Введение. 82

Ж.2. Принятые сокращения. 82

Ж.3. Виды и объем испытаний. 83

Ж.4. Подготовка к испытаниям и условия их проведения. 87

Ж.5. Испытания отдельных узлов гидромеханических регуляторов частоты вращения. 90

Ж.6. Испытания электрогидравлических регуляторов частоты вращения. 98

Ж.7. Испытания гидромеханической части ЭГР. 122

Ж.8. Испытания исполнительных органов системы регулирования гидротурбин. 125

Ж.9. Испытания замкнутой системы регулирования. 128

Ж.10. Испытания вспомогательных устройств системы регулирования. 136

Ж.11. Средства испытаний, обработка и оформление результатов испытаний. 140

Приложение И. Методические указания по эксплуатационному контролю вибрационного состояния конструктивных узлов гидроагрегатов. 144

И.1 Общие положения. 144

И.2 Средства измерения вибрации и биения вала. 145

И.3 Контроль вибрации опорных конструкций и биения вала гидроагрегата. 146

И.4 Контроль вибрационного состояния стальных конструкций статора. 148

И.5 Контроль вибрационного состояния лобовых частей обмотки статора. 151

Приложение К. Конструктивные нормы и допуски в узлах гидроагрегатов, подлежащие проверке при эксплуатационном контроле. 153

К.1 Общие положения. 153

К.2 Рабочие механизмы гидротурбин. 154

К.3 Система регулирования гидротурбин. 156

К.4 Гидрогенераторы.. 157

Приложение Л. Нормы контроля технического состояния гидрогенераторов. 159

Приложение М. Методические указания по проведению осмотров гидрогенераторов. 172

М.1 Введение. 172

М.4.2 Обмотка статора. 174

М.4.3 Ротор. 176

M.5 Формуляры регистрации дефектов и повреждений.

Приложение Н. Методические указания по контролю нагрева паяных соединений лобовых частей обмоток статора гидрогенераторов с помощью термоиндикаторных этикеток. 179

Приложение П. Методические указания по проведению эксплуатационных испытаний гидрогенераторов на нагревание при штатных режимах. 184

Приложение Р. Методика измерения уровня частичных разрядов в обмотке статора гидрогенератора. 198

Приложение С. Методика измерения уровня частичных разрядов в обмотке статора гидрогенератора под нагрузкой. 200

Приложение Т. Методические указания по контролю состояния прессовки сердечника статора гидрогенератора и ее восстановлению.. 202

Приложение У. Методика определения очагов опасного замыкания активной стали сердечника статора гидрогенератора. 206

Приложение Ф. Методические указания по определению форм ротора и статора гидрогенераторов и оценке симметрии воздушного зазора. 208

Приложение X. Методика оценки технического состояния щёточно-контактного аппарата гидрогенераторов. 212

Приложение Ц. Методические указания по контролю состояния подпятников вертикальных гидроагрегатов. 216

Ц.1 Общие положения. 216

Ц.2 Технический эксплуатационный контроль за состоянием подпятника. 217

Ц.3 Технические обследования (испытания) подпятников. 219

Ц.4 Определение состояния подпятников перед испытаниями. 221

Ц.5 Объем измерений при испытаниях подпятников. 222

Ц.6 Режимы испытаний подпятников. 223

Ц.7 Особенности испытаний некоторых типов подпятников. 224

Ц.8 Проведение измерений при испытаниях подпятников. 225

Приложение Ш. Методические указания по контролю состояния системы перевода гидроагрегатов в режиме синхронного компенсатора. 177

Приложение А

(обязательное)

Методические указания по эксплуатационным энергетическим испытаниям гидроагрегатов

Методические указания устанавливают условия и порядок проведения эксплуатационныхэнергетических испытаний гидроагрегатов гидроэлектростанций абсолютным и индексным методами, применяемые средства измерений, а также порядок обработки и представления результатов испытаний. Действие Методических указаний распространяются на гидроагрегаты с гидротурбинами различных типов, мощности и геометрических размеров.



Реклама

Методические указания составлены на основе «Международного кода натурных приемо-сдаточных испытаний гидравлических турбин» и ГОСТ 8.439-81 «Расход воды в напорных трубопроводах».

А.1 Общие положения

А.1.1. Основной целью натурных энергетических испытаний гидроагрегатов является уточнение энергетических характеристик, необходимых для наиболее экономичной эксплуатации гидроагрегатов. При поставке на ГЭС гидротурбинного оборудования энергетические характеристики выдают заводы-изготовители по результатам пересчета с характеристик модельной гидротурбины. Вследствие не учитываемых при расчете факторов, а также отклонений при изготовлении рабочих колес и проточной части гидротурбины фактические энергетические характеристики имеют отличия от пересчитанных с модельных и могут быть различны для отдельных гидроагрегатов той же ГЭС.

Эти различия в процессе эксплуатации могут увеличиваться вследствие неодинакового износа рабочих колес и проточной части и отклонений при восстановления профилей лопастей при ремонтно-восстановительных работах.

Натурные энергетические испытания агрегатов могут производиться также:

для определения эффективности модернизации и ремонтно-восстановительных работ на гидротурбинах;



Реклама

для определения ограничений максимальной мощности из-за возникновения кавитационных явлений при понижении уровня нижнего бьефа;

для оптимизации комбинаторной связи поворотно-лопастных гидротурбин.

А.1.2. В результате испытаний можно получить следующие энергетические характеристики:

рабочую - зависимость КПД от мощности;

расходную - зависимость расхода воды через турбину от мощности;



Реклама

эксплуатационную - зависимость КПД от мощности (или расхода воды) и напора;

мощностную - зависимость мощности от открытия регулирующих органов турбины.

А.1.3. В зависимости от целей испытаний может быть использован один из двух методов энергетических испытаний: абсолютный или индексный.

Абсолютный метод предусматривает определение фактических (абсолютных) значений КПД. При индексном методе определяется индексное или относительное значение КПД.

А.1.4. Известны несколько видов абсолютных методов испытаний, из которых наибольшее распространение получили метод «давление - время», метод «площадь - скорость» и термодинамический метод.



Реклама

В отечественной практике испытаний гидротурбин, как правило, применяется метод «площадь - скорость», который и рекомендован Методическими указаниями. Это не исключает возможности освоения и применения других методов испытаний.

А.1.5. Метод «площадь - скорость» предусматривает измерение местных скоростей в мерном сечении. Интегрированием поля местных скоростей вычисляют среднюю скорость; ее значение умножают на площадь мерного сечения и таким образом определяют расход воды.

А.1.6. При испытаниях однотипных агрегатов в случае размещения мерного створа во входном сечении водоприемника гидротурбины может применяться упрощенный способ, представляющий собой модификацию метода «площадь - скорость». В этом случае средняя скорость определяется как среднеарифметическое значение скоростей, измеренных в отдельных точках сечения, умноженное на коэффициент коррекции, принимаемый единым для всех однотипных гидроагрегатов и определяемый по результатам испытаний одного из гидроагрегатов абсолютным методом.

А.1.7. Местные скорости измеряются гидрометрическими вертушками, которые могут быть установлены как в закрытом, так и в открытом водоводах. Для снижения погрешности измерений необходимо, чтобы поток в мерном створе удовлетворял требованиям по отсутствию в нем косоструйности, закручивания, несимметричности и повышенной турбулентности.

А.1.8. Сущность индексного метода испытаний заключается в определении условного или индексного КПД гидротурбины (гидроагрегата) путем измерения фактических значений мощности и напора и условной (относительной) величины расхода воды через гидротурбину. Вычисленный по результатам измерений КПД выражается в произвольно выбранных индексных величинах.



Реклама

А.1.9. При индексном методе испытаний измеряется величина, пропорциональнаяфактическому расходу воды. Наибольшее распространение получил способ Винтера-Кеннеди, заключающийся в измерении перепада давления между двумя специально выбранными точками спиральной камеры турбины; при этом принимается, что расход пропорционален корню квадратному из значения перепада давления. Индексный метод не рекомендуется применять при расходах, меньших половины номинального.

А.1.10. При измерении расхода по способу Винтера-Кеннеди требуется наличие двух пьезометрических выводов в одном и том же радиальном сечении спиральной камеры, расположенном между статорными колоннами. Один вывод размещается на внешнем радиусе спирали, другой - на внутреннем радиусе у статорных колонн (рис. 1, а и б). Для повышения надежности измерения перепада обычно размещают несколько пьезометрических выводов. Это позволяет произвести уточнение показателя степени в формуле (5.7), принимаемого обычно на нетарированном створе равным 0,5.

А.1.11. Испытания индексным методом могут быть применены самостоятельно или совместно с абсолютным методом. Применение абсолютного метода позволяет произвести тарировку расходомерного пьезометрического створа, в котором определяют индексный расход, и в последующем пересчитать индексный расхода на фактический. Поэтому сочетание обоих методов весьма эффективно при неоднократных испытаниях гидроагрегата, например, с целью установления его эксплуатационной характеристики.

Индексные испытания на нетарированном расходомерном створе в сочетании с модельными испытаниями гидротурбины позволяют установить форму рабочей характеристики турбины и применяются в основном для выявления изменений КПД гидротурбины с течением времени вследствие износа рабочего колеса и проточной части, после проведения ее капитального ремонта, изменения высоты отсасывания и т.д., а также для определения оптимальной комбинаторной зависимости поворотно-лопастных гидротурбин.

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2



Реклама

Рис. 1. Схема расположения пьезометрических выводов 1 и 2:

а - в металлической стальной камере (a = 45 - 90°; b = ±130°; g = 0 ± 45°); б - в бетонной спиральной камере (a = 20 - 50°)

А.2. Организация испытаний

А.2.1. Подготовительные работы

А.2.1.1. На основании типовой технической программы (приложения 1 - 3) должна быть составлена рабочая программа испытаний в которой указываются:



Реклама

цель испытаний;

объем подготовительных работ - подготовка аппаратуры, схем измерения, изготовление необходимых для испытаний приспособлений, оборудование постов наблюдений;

режимы работы агрегатов;

порядок производства измерений;

данные о подготовке персонала к проведению испытаний (по производству измерений и выполнению мер безопасности);

расчет времени, необходимого на испытания, и время аварийной готовности агрегата.

Рабочую программу утверждает технический руководитель ГЭС по согласованию с заинтересованными организациями (завод-изготовитель турбины, проектная организация и др.).

А.2.1.2. В соответствии с программой испытаний и с учетом необходимости выполнения ряда подготовительных работ, требующих останова гидроагрегата, оперативный персонал ГЭС должен заблаговременно подать заявку в соответствующий диспетчерский центр.

А.2.1.3. При производстве испытаний абсолютным методом необходимо изготовить вертушечную раму. После установки вертушечной рамы в трубопроводе или перед опусканием ее в пазы водоприемника следует произвести установку лопастных винтов вертушек и проверку их контактной системы.

А.2.1.4. При применении упрощенного способа испытаний нескольких гидроагрегатов должны быть соблюдены следующие условия:

идентичность конструкции и одинаковые размеры входного сечения водоводов;

фиксированное положение вертушек относительно потока;

использование одних и тех же вертушек при испытании всех гидроагрегатов;

одинаковые режимы работы соседних с испытуемым агрегатов.

Рама для упрощенного способа испытаний должна перекрыть все измерительное сечение водоприемника.

А.2.1.5. До проведения испытаний следует обмерить мерные сечения для вертушечных измерений расхода воды. Ширину прямоугольного входного сечения спиральной камеры следует измерять не менее чем на пяти горизонталях, находящихся на одинаковом расстоянии одна от другой, металлической рулеткой с миллиметровыми делениями при осушенном от воды входном сечении.

Высоту прямоугольных сечений следует измерять металлической рулеткой, штангой или тросом с грузом не менее чем на пяти вертикалях, равно отстоящих одна от другой. Если такой обмер невозможен, указанные размеры принимаются на основании строительной технической документации.

А.2.1.6. Площадь мерного сечения круглого напорного трубопровода необходимо вычислить по результатам измерений не менее чем на четырех диаметрах. Если разность между двумя измерениями оказывается более 0,5 %, число измерений следует удвоить. Диаметр трубопровода принимают равным среднему арифметическому значению этих измерений.

Погрешность измерения линейных размеров при определении площади мерного прямоугольного сечения не должна превышать 0,2 %, а круглого - 0,1 %.

А.2.1.7. Перед измерением уровней воды в бьефах должно быть проверено исправное состояние водомерных реек, правильность показаний дистанционных датчиков уровня; нивелировкой или другими методами должны быть определены значения отметок, от которых должен производиться отсчет уровней бьефов с помощью рулетки.

А.2.1.8. Все используемые во время испытаний отборы давления должны быть проверены и промыты водой. В необходимых случаях следует произвести их продувку сжатым воздухом, а перед испытаниями произвести ревизию состояния пьезометрических выводов в спиральной камере: выводы и прилегающая к ним поверхность спиральной камеры должны быть очищены от наслоений ржавчины, грязи и заусенцев, пьезометрические отверстия должны быть откалиброваны сверлом диаметром 6 мм. После заполнения спиральной камеры водой все отборы давления должны быть промыты водой, изо всех трубок должен быть удален воздух и произведено подсоединение измерительных приборов.

А.2.1.9. На гидроагрегате, как правило, остановленном, следует произвести подключение ваттметра и счетчика активной энергии, а после пуска гидроагрегата проверить правильность их показаний по щитовым приборам. При последующих испытаниях следует подключать ваттметр к тем же трансформаторам, что и ранее.

А.2.1.10. После установки приборов и проверки их показаний руководитель испытаний должен произвести инструктаж всех участков испытаний, во время которого предупредить о необходимости выполнения мер безопасности и проверить выполнение технических мероприятий в соответствии с требованиями ПТБ.

А.2.2. Порядок проведения испытаний

А.2.2.1. Руководитель испытаний непосредственно перед их началом должен согласовать с оператором ГЭС программу испытаний и уточнить все вопросы, связанные с режимами работы испытываемого гидроагрегата. В процессе испытаний необходимый режим работы гидроагрегата поддерживается строго стабильным в течение всего времени измерений.

А.2.2.2. Испытания всех типов гидротурбин проводят идентично. При этом на поворотно-лопастных гидротурбинах устанавливают комбинаторную связь, соответствующую напору, при котором проводятся испытания. При определении оптимальной комбинаторной зависимости комбинаторную связь разобщают. Для предупреждения существенных изменений напора в ходе испытаний следует поддерживать постоянную нагрузку на ГЭС, для чего изменения нагрузки на испытуемом гидроагрегате следует компенсировать соответствующим изменением нагрузки на других агрегатах, по возможности наиболее удаленных от испытуемого.

А.2.2.3. При испытаниях следует устанавливать ряд режимов по нагрузке агрегата в пределах от 30 - 40 % до максимального значения, а при испытаниях абсолютным методом - от холостого хода. Изменение нагрузки производить ступенями через 5 - 7 %, в рабочей зоне нагрузок ступени должны быть меньше, чем в нерабочей зоне. Необходимую нагрузку агрегата устанавливать изменением положения регулирующих органов с помощью ограничителя открытия строго в направлении открытия от минимальной до максимальной нагрузок. В необходимых случаях, например, для проверки наличия люфтов в регулирующих органах, следует произвести измерения при обратном ходе. При этом после установки максимальной нагрузки производить снижение нагрузки ступенями при повороте рукоятки ограничителя открытия строго в сторону закрытия.

Для получения достаточно представительного ряда измерений следует задавать не менее 10 значений нагрузки как для прямого, так и для обратного хода.

А.2.2.4. Выполнение измерений следует начинать через 2 - 3 мин после установления нагрузки. При протяженном водоподводящем тракте время выдержки следует увеличить до 5 - 15 мин. Измерения производят в течение 1 - 2 мин. При этом определяют среднеинтервальное значение каждого измеряемого параметра.

А.2.2.5. Для исключения во время испытаний случайных неверных записей показаний приборов в процессе испытаний или сразу же по окончании всех измерений следует произвести косвенный контроль достоверности полученных результатов. Для этого используют функциональные зависимости между измеряемыми параметрами

или P = f(S), где S - ход штока сервомотора направляющего аппарата.

При отклонении измеренного значения в точке на величину, превышающую погрешность измерений, производятся повторные измерения при той же или близкой нагрузке. При этом сохраняется прежний порядок установки нагрузки.

А.3 Выполнение измерений

А.3.1 Напор

А.3.1.1 Напор гидроустановки (ГЭС) определяется разностью осредненных по сечению значений удельной энергии воды в верхнем и нижнем бьефах ГЭС (рис. 2, а):

(4.1)

где коэффициенты кинетической энергии a0 и a2 обычно принимаются равными единице, Z0 и Z2 - уровни воды в сечениях 0 и 2.

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 2. Схема определения напора:

а - для низконапорной реактивной турбины; б - для высоконапорной реактивной турбины; в - для ковшовой турбины

При измерении уровня в верхнем бьефе (ВБ) на некотором удалении от входа в водоприемник, где скоростной напор близок к нулю (сечение «0»), и уровня в нижнем бьефе (НБ) на удалении от выхода из отсасывающей трубы (сечение 3), где уровень имеет максимальное значение, напор определяется выражением

Нг = NВБ - NНБ. (4.2)

Напор гидротурбины в общем случае определяется напором ГЭС за вычетом потерь напора, т.е.

Нт = Нг - Нw. (4.3)

Напор гидротурбины в низконапорных гидроэлектростанциях может быть определен по измерениям уровней воды в сечениях 1 и 2 или 1 и 3 (рис. 2, а):

(4.4)

или

(4.4?)

Для высоконапорных реактивных турбин напор турбины определяется выражением (рис. 2, б)

(4.5)

где Р1 - манометрическое давление с учетом отмети установки манометра.

Напор ковшовой гидротурбины определяется выражением (рис. 2, в)

(4.5?)

Для деривационных гидроэлектростанций, особенно с общим для нескольких агрегатов деривационным водоводом, определяют напор блока, который равен напору ГЭС за вычетом потерь напора в деривации. Напор блока измеряется по уровню воды в напорном бассейне (при открытой деривации) или уравнительном резервуаре (при напорной деривации) с учетом скоростного напора в водоводе в точке измерения уровня.

А.3.1.2. Для измерения уровней в бьефах применяются водомерные рейки и дистанционные приборы пульта управления ГЭС. Рейки устанавливаются в каждом подводящем водоводе испытываемой гидротурбины. Нули реек должны быть привязаны нивелировкой к одному общему реперу ГЭС.

Для измерения уровней могут быть использованы штатные уровнемеры. В этом случае перед испытаниями они должны быть проверены с целью определения соответствия их показаний фактическим значениям уровней воды.

А.3.1.3. Для измерения давления в водоводах и проточном тракте турбин могут применяться пружинные манометры, пьезометры, дифференциальные манометры и грузопоршневые манометры. Пружинные стрелочные манометры могут применяться для измерения давления в точках напорного тракта при отсутствии существенных пульсаций давления. Класс точности используемых приборов должен быть не ниже 0,6. Допустимо применять манометры более низкого класса точности с обязательной их проверкой по уровню верхнего бьефа на остановленном агрегате. Измеряемое давление должно находиться в диапазоне 0,5 - 0,8 предела измерения прибора.

При выборе мест для подключения приборов по измерению давления в водоводах необходимо придерживаться следующих рекомендаций: участок должен быть прямолинейным с гладкими стенками; неравномерность потока на данном участке должна быть минимальной; отбор давления производить в точке на горизонтальной или вертикальной (вверху) оси водовода.

Для измерения среднего давления на входе в спиральную камеру турбины следует использовать осредняющие кольца с отверстиями, соединяющими несколько точек по окружности водовода.

Для повышения точности измерения давления при его колебаниях рекомендуется применять демпфирующие устройства. Они должны быть абсолютно симметричными, т.е. обладать одинаковым сопротивлением потоку в обоих направлениях.

Пьезометры для измерения давления (или разности давлений) должны выполняться с соблюдением следующих требований: трубки пьезометров должны иметь непрерывный подъем без петель и прогибов во избежание скопления воздуха;

в верхней части пьезометрической системы должен быть предусмотрен клапан для выпуска скапливающегося в трубках воздуха;

система пьезометрических измерений не должна иметь протечек.

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 3. Схема соединения грузопоршневого манометра с дифманометром

При измерении давления с помощью дифференциального манометра одну его полость соединяют с пьезометрическим выводом испытываемой турбины, а другую - с аналогичным выводом соседней неработающей турбины. Для этой цели могут применяться как ртутные U-образные дифманометры, так и обратные U-образные водовоздушные дифманометры, а также электрические дифманометры.

Для точного измерения давления в напорных водоводах могут применяться грузопоршневые манометры МП-60. Возможны две схемы их подключения: непосредственного соединения с выводом или через дифманометр (рис. 3). Вторая схема соединений более предпочтительна при существенных пульсациях давления.

А.3.2. Мощность

А.3.2.1. При энергетических испытаниях гидротурбин производят измерение мощности гидрогенератора, по которой при известном КПД генератора определяют мощность на валу турбины.

А.3.2.2. Мощность трехфазных генераторов при возможной несимметричной нагрузке фаз может измеряться с помощью трех однофазных ваттметров. Однако более распространенной является схема измерения с помощью двух однофазных ваттметров (рис. 4), обеспечивающая измерение всей активной мощности трехфазной системы независимо от нагрузки фаз. Для измерения необходимы два трансформатора тока и два трансформатора напряжения, соединенные по схеме открытого треугольника. Трансформаторы должны иметь класс точности не ниже 0,5; ваттметры - 0,2. Измеренная мощность (Р, Вт) определяется по формуле

Р = Ктт?Ктн(W1 + W2)п, (4.6)

где Kтт и Ктн - коэффициенты трансформации трансформаторов тока и напряжения;

W1 и W2 - показания ваттметров;

п - цена деления шкалы приборов.

3.2.3. Для измерений может применяться трехфазный ваттметр, представляющий собой по существу схему двух однофазных ваттметров с одной общей подвижной частью. Класс точности приборов должен быть 0,2 - 0,5.

Для обеспечения необходимой точности измерений необходимо следить за тем, чтобы нагрузка измерительных трансформаторов не превышала номинального значения для данного класса.

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 4. Схема измерения активной мощности в трехфазных цепях двумя однофазным ваттметрами

А.3.2.4. Для определения среднеинтервального значения мощности могут быть использованы трехфазные счетчики активной энергии класса точности 0,5 - 1,0. При этом подсчитывают количество оборотов диска за единицу времени (секунду), которое умножают на постоянную счетчика и коэффициенты трансформации трансформаторов тока и напряжения. При использовании электронных цифровых счетчиков приращение выработки электроэнергии определяют непосредственно по цифровому указателю.

А.3.3. Перепад давления в спиральной камере

А.3.3.1. Измерение перепада давления производится с помощью дифманометров различных типов. При больших перепадах давления (более 3 м вод. ст.) следует применять U-образные ртутные дифманометры (рис. 5, а). Разность давлений (Р, м вод.ст.) вычисляют по формуле

DР = g(rрт - r)h, (4.7)

где r и rрт - плотность вода ж ртути.

А.3.3.2 При перепадах давления менее 3 м вод.ст. следует применять обратные U-образные водовоздушные дифманометры (рис. 5, б), выполненные из калиброванных стеклянных трубок, соединенных резиновыми шлангами. Воду из верхней части трубок следует отжимать сжатым воздухом из пневмосистемы низкого давления или с помощью насоса.

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

а)

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

б)

Рис. 5. Схема измерения перепада давления в спиральных камерах турбин с помощью дифманометров:

а - обратного U-образного водовоздушного дифманометра; б - U-образного ртутного дифманометра

При использовании водовоздушных дифманометров для измерения больших перепадов давления (5 - 10 м вод.ст) целесообразно применять чашечный дифманометр (рис. 6). Одно колено в нем выполнено из тонкой стеклянной трубки (диаметром 10 - 12 мм), а другое содержит металлический сосуд (чашу), уровень воды в котором определяют с помощью стеклянной трубки. Площадь сосуда в 100 и более раз больше площади поперечного сечения трубки. Воду из верхней части сосуда с помощью сжатого воздуха отжимают таким образом, чтобы при равных давлениях в коленах уровень воды находился в средней части сосуда. С повышением расхода воды уровень воды изменятся практически только в стеклянной трубке.

А.3.3.3. Для измерения перепада давления могут быть также использованы электрические дифманометры класса точности 0,5 - 1,0 в сочетании со стрелочным или регистрирующим миллиамперметром класса точности 0,5. Регистрация позволяет упростить отсчет показаний и повысить точность измерений малых перепадов давления.

А.3.4. Расход воды

А.3.4.1. Определение расхода воды на гидроэлектростанциях производят методом «площадь-скорость» по измерениям местных скоростей гидрометрическими вертушками.

На низконапорных ГЭС мерное сечение располагают обычно во входном сечении водоприемника турбинного водовода; на средне- и высоконапорных ГЭС - преимущественно в напорных трубопроводах.

А.3.4.2. При измерениях расхода воды в водоприемнике прямоугольного сечения мерный створ должен быть замкнутым и должен удовлетворять основным требованиям гидрометрии: поток, проходящий через это сечение, должен быть прямолинейным и должен иметь направление скоростей, перпендикулярное сечению, при минимальной пульсации скорости.

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 6. Чашечный дифманометр

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 7. Схема дифманометра с трубами большого диаметра:

1 - стеклянные трубки; 2 - металлические трубки; 3 - шкала

А.3.4.3. Гидрометрические вертушки должны быть расположены в мерном створе таким образом, чтобы направление потока, натекающего на вертушку, не превышало 10 град. Практически у порога и на верхних горизонталях углы натекания могут составлять более 10 град, поэтому следует применять компонентные вертушки (ГР-21, ГР-55, ГР-99).

А.3.4.4. Для обеспечения достаточно точного измерения расхода воды через турбину необходимо определенное насыщение мерного створа гидрометрическими вертушками. Количество точек измерения в прямоугольном створе определяют из соотношения

(3.8)

где F - площадь сечения, м;

М - количество вертушек, равное количеству точек измерения.

Весь мерный створ разбивают вертикальными и горизонтальными линиями, пересечение которых определяет положение точек измерения. Крайние вертикали и горизонтали выбирают как можно ближе к стенкам водоприемника. Пример расположения измерительных точек в мерных сечениях приведен на рис. 8.

При упрощенном способе испытаний количество точек измерения выбирают в четыре - пять раз меньше, чем по (3.8). Вертушки размещают равномерно по измерительному сечению.

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 8. Пример расположения мерных точек в сечении водовода турбины

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 9. Однорядная вертушечная рама

А.3.4.5 При измерении скоростей в водоприемниках вертушки устанавливают на горизонтальной сварной раме. Рама может быть однорядной (рис. 9) или многорядной. Рама должна быть достаточно прочной и обтекаемой.

А.3.4.6 Рекомендуется применять точечный способ измерений, когда при каждом режиме работы турбины предусматривается последовательная установка рамы и измерение скоростей на отдельных горизонталях в пределах полной высоты мерного створа. Допускается применять и интегральный способ измерений.

А.3.4.7 Для перемещения вертушечных рам используют подъемные краны ГЭС или электрические лебедки. Требуемые положения рамы должны быть заранее размечены по тросу или электрическому кабелю, связывающему вертушки с регистрирующим устройством. В качестве последнего могут применяться хронографы, шлейфовые осциллографы или специальные счетчики импульсов.

А.3.4.8. При измерении расхода воды в напорных трубопроводах круглого сечения мерный створ выбирают на прямых участках трубопровода, где измеряемые скорости находятся в пределах рабочего диапазона гидрометрических вертушек. Длина прямого участка вверх по потоку должна быть не менее 20 диаметров, а длина между мерным створом и местным сопротивлением, расположенным ниже по потоку, должна быть не менее 5 диаметров.

А.3.4.9. В круглом сечении минимальное число точек измерений должно быть 13. Точки располагают на пересечении двух взаимно перпендикулярных диаметров, проведенных под углом 45 град к горизонтали.

На каждом радиусе берут не менее трех точек, не считая контрольной, расположенной в центре трубопровода.

Крайние точки располагают как можно ближе к стенкам трубопровода, однако расстояние между стенкой и осью вертушки не должно быть менее 0,75 диаметра ротора вертушки. Количество точек (М) на одном радиусе определяются из соотношения

(3.9)

где R - радиус трубопровода.

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 10. Схема расположения вертушек в круглом трубопроводе

На рис. 10 показано расположение точек измерений с установкой в мерном створе круглого трубопровода вертушек ГР-55 и ГР-21 в зависимости от числа точек измерений на радиусе. В табл. 1 приведены относительные длины радиусов измерительных окружностей при числе точек измерений на радиусе от 3 до 8. (Здесь rм - радиус измерительной окружности вертушки, ближайшей к стенке трубопровода).

А.3.4.10. Местные скорости потока можно измерять параллельным и интеграционным способами.

При параллельном способе измерений в мерном створе устанавливают стационарную раму с гидрометрическими вертушками. В зависимости от диаметра трубопровода она может состоять из двух или трех штанг. В качестве примера на рис. 11 показана стационарная рама из двух штанг.

При интеграционном способе непосредственно измеряют средние скорости на окружностях круглого сечения. Для этого применяют поворотную раму. Приводом рамы должен быть электродвигатель, который через редуктор поворачивает раму на один оборот.

А.3.4.11. Для исключения влияния пульсаций скорости на точность измерения продолжительность измерения местной скорости должна быть не менее 100 с.

Для точного отсчета временных интервалов на регистратор должны быть заведены сигналы отметчиков времени. Погрешность определения заданного интервала не должна превышать 0,2 %.

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 11. Стационарная батарея

А.3.5. Положение регулирующих органов турбины

А.3.5.1. Измерение открытия направляющего аппарата и угла разворота лопастей поворотно-лопастных гидротурбин производят по шкалам сервомоторов. При этом используют тарировочные зависимости указанных параметров от хода штока сервомотора направляющего аппарата и от указателя угла на маслоприемнике, после монтажа оборудования или окончания капитального ремонта при осушенном проточном тракте турбины.

А.3.5.2. Для повышения точности отсчета к штатной шкале указателей рекомендуется поставить миллиметровую линейку или наклеить на шкалу миллиметровую бумагу. Целесообразно одновременно производить измерения открытий регулирующих органов по указателям на колонке регулятора частоты вращения.

А.4. Обработка материалов испытаний

А.4.1. Вычисление расхода воды

А.4.1.1. Расход воды вычисляется как произведение средней скорости потока на площадь поперечного сечения мерного створа; при этом принимают направление скорости перпендикулярно плоскости сечения. Среднюю скорость вычисляют интегрированием поля местных скоростей, заданного в виде эпюры скоростей в сечении потока. В практике измерения расходов воды на ГЭС наибольшее применение нашел метод графо-аналитического интегрирования поля местных скоростей, являющийся разновидностью метода графического интегрирования. Ниже приведена последовательность вычисления расхода воды указанным методом.

Значение местной скорости в каждой точке измерения определяют по частоте вращения вертушечной лопасти, определяемой по числу замыканий контактов вертушки в единицу времени. По частоте вращения, пользуясь градуировочной характеристикой вертушки, определяют значение скоростей в каждой точке измерения.

А.4.1.2. Вычисление расхода воды в водоводах прямоугольного сечения выполняется следующим образом.

Для каждой измерительной горизонтали строится эпюра скоростей как зависимость скорости от расстояния до стенки водовода (рис. 13), и подсчитывается площадь эпюры. Она состоит из двух частей, одна из которых заключена между двумя крайними измеренными скоростями, а другая образована пристеночными зонами между стенкой и крайней измеренной скоростью. Площадь пристеночных зон (S 41 0) с двух сторон измерительной горизонтали вычисляют по приближенной формуле

(5.2)

где m- коэффициент, определяемый экспериментально в соответствии с ГОСТ 9.439-81. При отсутствии экспериментальных данных можно принимать m = 7;

Vy - местная скорость в крайних точках измерительной горизонтали на расстоянии у от ближайшей стенки. Площадь остальной части эпюры может быть определена графически планиметром или графо-аналитическим методом.

Средняя скорость на горизонтали (V, м/с) определяется выражением

= (S1? + S1? + S2)/L, (5.3)

где S1? и S1? - площади пристеночных зон.

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 13. Эпюры скоростей в мерном створе прямоугольного сечения

Строят график зависимости V от высоты измерительного сечения (см. рис. 13). Площадь эпюры S4 между крайними горизонталями определяют графо-аналитическим методом, а площади пристеночных зон вычисляют по формуле

(5.2)

где Vy - средняя скорость на крайних горизонталях.

Средняя в сечении скорость (Vcp, м/с) определяется выражением

Vcp = (S3? + S3? + S4)/H. (5.3)

Расход воды численно равен произведению средней скорости на площадь сечения мерного створа.

А.4.1.3. При вычислении расхода воды в круглом трубопроводе средняя скорость потока (Vср, м/с) определяется суммой двух интегралов

(5.4)

где rм - радиус окружности, на которой расположены точки измерения, ближайшие к стенке (рис. 14, а);

- средняя скорость на окружности радиусом r.

Средние скорости на измерительных окружностях вычисляют как среднеарифметическое местных скоростей, определенных на каждой окружности.

Строят график зависимости V от (r/R)2 от r = 0 до r = rм (рис. 14, б). Площадь полученной эпюры определяют методом трапеций. Так, при установке трех вертушек на радиусе площадь эпюры до крайней измеренной точки будет равна

где a = (r1/R)2; b = (r2/R)2 - (r1/R)2; c = (r3/R)2 - (r2/R)2.

Площадь эпюры (S2) в пристеночной зоне зачисляется по приближенной зависимости

(5.5)

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 14. Графики для определения расхода воды в круглом трубопроводе:

а - схема расположения измерительных окружностей; б - кривая зависимости от

где т - коэффициент, определяемый экспериментально (m = 4 - 10); при отсутствии экспериментальных данных рекомендуется принимать m = 7;

- средняя скорость в ближайшей к стенке точке измерения.

Средняя скорость потока численно равна сумме площадей S1 и S2, а расход - произведению средней скорости на площадь поперечного сечения трубопровода.

А.4.1.4. Для вычисления расхода воды при упрощенном способе испытаний обязательно должен быть испытан агрегат с протарированным створом спиральной камеры. По результатам испытаний с одновременным измерением скоростей потока и перепада давления производят вычисление расхода воды в соответствии с выражением (5.7) и среднеарифметического значения скорости ()

(5.6)

где vi - скорость в i-й точке измерения; М - число точек измерения.

5.1.5. Делением расхода воды на площадь мерного сечения вычисляют среднюю скорость (vср, м/с) и определяют коэффициент коррекции a

(5.6?)

Полученное значение a распространяется на все агрегаты, а расход воды определяется выражением

(5.6?)

где F - площадь мерного сечения, м2.

А.4.2. Определение параметров тарировочного уравнения расходомерного створа спиральной камеры

А.4.2.1. Связь между расходом воды и перепадом давления в спиральной камере определяется тарировочным уравнением расходомерного створа:

Q = К?hn, (5.7)

где К - тарировочный коэффициент;

n - показатель степени.

А.4.2.2. Определение численных значений параметров тарировочного уравнения производят по результатам одновременных измерений расходов воды и перепада давления. Для проверки постоянства параметров уравнения в диапазоне измерения расходов строят зависимость lgQ = f(lgh) (рис. 15), представляющую прямую линию. Точки, отклоняющиеся от прямой за пределы зоны погрешностей, должны быть исключены из дальнейшей обработки (например, точки 1, 2 на рис. 15). При отсутствии разброса точек от прямой значения К и n могут быть определены непосредственно из графика.

(5.8)

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 15. Тарировочная характеристика расходомерного створа спиральной камеры в логарифмических координатах

А.4.3. Вычисление напоров

А.4.3.1. Напор гидроустановки (напор - брутто) вычисляется как разность уровней верхнего и нижнего бьефов, и только в тех случаях, когда измерение нижнего бьефа производится непосредственно на выходе из отсасывающей трубы испытуемого агрегата, учитывается скоростной напор по формуле (4.1).

А.4.3.2. Для определения напора турбины (напор - нетто) во всех случаях рекомендуется пользоваться формулой (4.3), предварительно определив зависимость потерь напора от расхода воды. Потери напора для низконапорных турбин (см. рис. 2, а) определяются зависимостью

(5.10)

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 16. График зависимости потерь напора в турбинном водоводе от расхода воды

а для высоконапорных турбин (см. рис. 2, б) - зависимостью

(5.10?)

Вычисленные значения потерь напора наносят на график в поле координат Hw - Q, по которым проводится параболическая кривая Нw = С ? Q2 (рис. 16). Значение коэффициента С определяется по методу наименьших квадратов выражением

(5.11)

А.4.4. Порядок построения основных энергетических характеристик при абсолютном методе испытаний

А.4.4.1. Для окончательного расчета энергетических характеристик должны быть использованы тщательно проверенные результаты измерений, приведенные к постоянному напору и номинальному значению частоты вращения. При отклонении частоты вращения гидроагрегата от номинального значения более чем на 0,5 % производят пересчет измеренного значения напора по формуле

(5.12)

где индекс ч относится к измеренным значениям частоты и напора, а индекс п - к номинальному значению частоты и приведенному к ней напору.

Значения мощности и расхода пересчитывают в соотношении

(5.13)

При отклонениях напора от среднего или заданного значения в пределах ±3 % заполняют пересчет измеренных значений мощности и расхода воды по формулам подобия

(5.14)

(5.14?)

где Qпр, Рпр - расход и мощность, приведенные к постоянному напору Hпр.

А.4.4.2. После внесения необходимых корректировок измеренных значений расхода и мощности строят контрольные графики зависимости расхода и мощности от открытия направляющего аппарата. Для дальнейших расчетов оставляют точки, не выходящие за пределы зоны максимальных погрешностей измерений.

По указанным точкам выполняют построение расходной характеристики гидроагрегата для постоянного напора ГЭС или напора гидроагрегатного блока (для деривационных ГЭС с общим для нескольких агрегатов деривационным водоводом) (рис. 18).

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 18. Расходная характеристика гидроагрегата (1) и турбины (2)

5.4.3. Коэффициент полезного действия гидротурбинного блока (hбл) вычисляют по формуле

. (5.15)

Для деривационных ГЭС с общим для нескольких агрегатов водоводом вместо напора Нг для расчетов используют напор Нбл, КПД гидроагрегата (ha) вычисляют по аналогичной формуле

(5.15?)

Для представления рабочей характеристики гидроагрегата и турбины при постоянном напоре турбины расход и мощность должны быть приведены к этому напору по формулам (5.14) и (5.14?).

Для определения характеристик турбины необходимо знать зависимость КПД генератора (hг) от мощности для cosj, при котором выполнены испытания. Указанная зависимость принимается либо по данным натурных испытаний, либо при отсутствии таковых по гарантиям завода-изготовителя генератора.

Вычисляют значения КПД и мощности гидротурбины:

hт = hа/hг; (5.16)

Nт = Р/hг; (5.17)

По вычисленным значениям выполняют построение рабочих характеристик блока, агрегата и турбины (рис. 19), а также расходной характеристики турбины для постоянного значения напора турбины (см. рис. 18).

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 19. Рабочие характеристики гидротурбинного блока (1), гидроагрегата (2) и гидротурбины (3)

Для проверки соответствия расходных и рабочих характеристик необходимо иметь в виду, что точка Ро на касательной, проведенной из нуля к расходной характеристике, соответствует максимальному значению КПД.

А.4.4.3. Для построения эксплуатационной характеристики необходимо иметь результаты испытаний как минимум при трех напорах. Для удобства использования характеристики эксплуатационным персоналом ГЭС ее построение выполняют в координатах Нг - Р, т.е. представляют эксплуатационную характеристику гидротурбинного блока. Для построения характеристики предварительно строят серии рабочих и расходных характеристик для постоянных значений напора Нг (рис. 20). При значениях КПД в целых числах определяют соответствующие им значения мощности. Полученные точки наносят в поле координат Нг - Р и по ним строят линии равных КПД. Координаты линий равных расходов определяют по серии расходных характеристик.

На эксплуатационную характеристику (рис. 21) наносят линии ограничения максимальной мощности. Вертикальная линия соответствует максимальной мощности генератора, а наклонная - турбины.

Последняя наносится по результатам натурных испытаний с учетом гарантий завода-изготовителя. Пересечение линий соответствует расчетному напору ГЭС.

С эксплуатационной характеристики турбины на построенную характеристику могут быть также перенесены линии допустимых высот отсасывания.

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 20. Рабочие и расходные характеристики гидротурбинного блока для трех напоров

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 21. Эксплуатационная характеристика гидротурбинного блока:

1 - линии равных КПД; 2 - линии равных расходов; 3 - линия ограничения мощности генератора; 4 - линия ограничения мощности турбины

А.4.4.4. Эксплуатационная характеристика является основой для построения остальных энергетических характеристик (удельных расходов воды, относительных приростов и т.д.). Так, по желанию заказчика могут быть представлены серии характеристик удельных расходов воды q = f(P) для постоянных значений напоров. Удельный расход определяется выражением

367,2q = Нг*/hбл, м3/МВт?ч (4.18)

Он является мерой энергетической эффективности использования стока, т.е. затрат энергоносителя (воды) на выработку электроэнергии.

Наиболее экономичный режим работы агрегата соответствует минимальному значению удельного расхода.

A.4.5. Определение КПД при индексном методе испытаний

А.4.5.1. В случае, когда численные значения параметров тарировочного уравнения расходомерного створа спиральной камеры определены предшествующими испытаниями абсолютным методом, по уравнению (5.7) производят вычисление расхода воды по измеренным значениям перепада давления. Последующие расчеты и построение характеристик производят так же, как и при абсолютном методе испытаний (п. 5.4).

А.4.5.2. При проведении испытаний на нетарированном створе принимают наиболее вероятное значение показателя степени n = 0,5 (если нет других данных, свидетельствующих, что n ? 0,5). По измеренным значениям перепада давления вычисляют индексное значение расхода воды

(4.19)

где К - масштабный коэффициент, значение которого может быть принято любым, в том числе равным единице. При подсчете по приведенной формуле следует помнить, что не всегда показатель степени равен 0,5. Часто значения показателя степени составляют от 0,48 до 0,52 и характерны в основном для полуспиральных конструкций спиральных камер. Для стальных спиральных камер полного охвата отклонение показателя степени находится в пределах 0,49 - 0,51 при 95 % доверительной вероятности.

Эффект изменения показателя степени отражается на форме кривой относительного КПД, поэтому при проведении испытаний с целью уточнения рабочих характеристик гидротурбины следует использовать результаты дополнительных испытаний с использованием двух независимых пар отборов давления, а также произвести сопоставление получаемой характеристики относительного КПД с рабочей характеристикой, пересчитанной с модельной.

А.4.5.3. При отклонении частоты вращения от номинального значения выполняют пересчет значений Qи, Н и Р по формулам (5.12) и (5.13), а при отклонениях напора от среднего - по формулам (5.14), (5.14?).

Так же как и при абсолютном методе, производят построение контрольных графиков и отбор действительных точек для последующих расчетов, а затем строят кривую зависимости индексного значения расхода от мощности.

По всем действительным точкам производят вычисление индексного КПД блока (Аhбл.):

(4.20)

По полученным точкам строят индексную рабочую характеристику блока, которая должна представлять собой плавную линию, осредняющую нанесенные точки в пределах допустимой погрешности. На построенной индексной рабочей характеристике находят точку Ро с максимальным значением КПД (Аhбл)макс. Все найденные индексные значения КПД могут быть пересчитаны в относительные значения КПД (h*):

(5.21)

по которым строят рабочую характеристику в относительных единицах КПД.

А.4.5.4. Для вычисления потерь напора и определения рабочей характеристики турбины принимается, что максимальное значение КПД турбины равно гарантированному значению КПД для данного напора. При этом для ПЛ-турбин комбинаторная зависимость должна соответствовать оптимальной. Пользуясь паспортными данными генератора, определяют КПД генератора для мощности Р0. Определение расхода воды, соответствующего мощности Р0, выполняют методом итераций. На первом шаге считают, что потери напора в подводящем тракте равны измеренному значению потерь Hw1 при мощности Р0 или при перепаде давления h0.

Тогда Нm1 = Нг - Hw1

Для найденного значения напора турбины по заводской эксплуатационной характеристике турбины при нагрузке N0 = Р0/hг определяют КПД турбины hт и вычисляют величину расхода.

Q01 = 102Р0/g · hт ? hг ? Hг1,

и скоростной напор Нv1 = Q012/2gF2,

где F - площадь сечения в месте установки манометра.

На втором шаге производят следующие вычисления:

Hw2 = Hw1 - Hи1;

Hг2 = Hг - Hw2;

Q02 = 102P0/ghтhгНг2;

Нv2 = Q022/2gF2.

Вычисления повторяют до тех пор, пока не будет выполнено условие (Q0i/Q0(i+1) - 1) 100 % ? e, где e - желаемая степень приближения, например 0,5 %.

После выполнения заданного условия значение расхода, определенное на последнем шаге, принимается за истинное и определяется тарировочный коэффициент расходомерного створа спиральной камеры

(5.22)

По измеренным значениям перепада давления производят вычисление абсолютных значений расхода воды, после чего и построение энергетических характеристик производят так же, как и при абсолютном методе испытаний.

А.4.5.5. Полученные в результате расчетов рабочие характеристики турбины и блока представляют зависимость абсолютных значений КПД от мощности. Однако следует помнить, что испытания индексным методом не устанавливают абсолютные значения КПД и на характеристиках следует указывать, что они получены из условия равенства максимальных значений КПД турбины гарантированному заводом значению.

Все полученные рабочие характеристики могут быть представлены в относительных значениях КПД, которые определяются их отношением к максимальному значению КПД турбины.

А.4.6. Оценка погрешностей

А.4.6.1. Для оценки зоны неопределенности энергетических характеристик, получаемых в результате испытаний, должны быть указаны погрешности результатов измерений.

Все погрешности подразделяются на систематические и случайные. Первые из них имеют характер постоянных составляющих, и в тех случаях, когда они могут быть предсказаны, учитываются в окончательном результате измерений. К такому типу погрешностей может быть отнесена неточность нуля отсчета. Непредсказуемые систематические погрешности чрезвычайно трудно обнаружить, поэтому невозможно скорректировать результат измерения.

Случайная погрешность измерения легко обнаруживается последующими измерениями, поэтому ее значение может быть существенно уменьшено увеличением количества и продолжительности измерений. Так, при n-кратном измерении величины Xi за результат измерения принимается среднее арифметическое значение Хi:

(5.23)

Среднеквадратическое отклонение sкiопределяется как

(5.24)

При построении функциональной зависимости по усредненным результатам измерений в п точках полоса ее неопределенности sх уменьшается в раз, т.е.

(5.25)

А.4.6.2. Максимальные погрешности измерений основных энергетических параметров определяются следующими выражениями. Для напора гидроэлектростанции

(5.26)

где DВБ и DНБ - абсолютная погрешность измерений уровней верхнего и нижнего бьефов, определяемая средним размахом колебаний уровней.

Для напора гидротурбины

(5.27)

где DНw - абсолютная погрешность определения потерь напора.

Для активной мощности при измерении ее трехфазным или двумя однофазными ваттметрами при равномерной загрузке фаз

(5.28)

где dтт и dтн - предельные относительные погрешности трансформаторов тока и напряжения, определяемые их классом точности;

dвтт - погрешность ваттметра.

Погрешность измерения расхода вода (dQ) гидрометрическими вертушками рассчитывают в соответствии с требованиями ГОСТ 8.439-81 или при отсутствии необходимых данных принимают по Международному коду (публикация 41):

для закрытых турбинных входов и трубопроводов диаметром 1,2 - 1,5 м - 1,2 %;

для трубопроводов диаметром более 1,5 м - 1 %.

Погрешность измерения расхода воды (dq)индексным методом с помощью ртутного или водовоздушного дифманометров определяется как

(5.29)

где h - абсолютная погрешность измерения перепада давления, определяемая ценой деления дифманометра.

При измерении перепада давления электрическими дифманометрами

(5.30)

где dg и dn - предельные относительные погрешности диафанометра и вторичного прибора, определяемые их классом точности.

Погрешность определения КПД (dh) вычисляется по формуле

(5.31)

А.4.6.3. Погрешность результата при определении разности КПД двух сравнительных испытаний может быть ниже, чем при определении самих значений КПД. Это достигается выполнением испытаний в идентичных условиях с использованием одинаковых методов и средств измерений, благодаря чему большая часть систематических погрешностей может не учитываться.

При измерении мощности с использованием тех же трансформаторов тока и напряжения их погрешности могут не приниматься в расчет. Систематические погрешности ваттметров могут не учитываться только в тех случаях, когда используются те же приборы, которые между испытаниями не подвергались воздействиям, могущим повлечь за собой изменение их погрешности.

Поскольку сравнительные испытания проводятся в основном индексным методом, то при вычислении погрешности измерения расхода может не учитываться точность тарировки расходомерного створа, т.е. может приниматься в расчет только случайная погрешность, которая путем увеличения количества отсчетов может быть достаточно малой.

А.4.6.4. При нахождении характеристик по измеренным точкам методом наименьших квадратов для оценки среднего квадратического отклонения определения характеристики можно пользоваться формулами (5.21) и (5.22), полагая за X значение в i-й точке, найденное по характеристике.

А.5. Определение оптимальной комбинаторной зависимости поворотно-лопастных гидротурбин

А.5.1. Метод пропеллерных характеристик

А.5.1.1. Сущность метода пропеллерных характеристик заключается в определении оптимальной комбинаторной зависимости, обеспечивающей такое соотношение между открытием направляющего аппарата и разворотом лопастей рабочего колеса, которое соответствует наивысшему из возможных значений КПД гидротурбины. Линия наивысших значений КПД получается, как огибающая пропеллерных рабочих характеристик, представляющих собой кривую зависимости КПД гидротурбины от мощности при постоянном угле разворота лопастей.

А.5.1.2. Для определения оптимальной комбинаторной зависимости не обязательно знать абсолютные значения КПД, поэтому испытания проводятся, как правило, индексным методом. Методика выполнения измерений должна соответствовать разд. 2 Методических указаний.

А.5.1.3. Снятию пропеллерных характеристик предшествует определение рабочей характеристики гидроагрегата при установленной комбинаторной связи. Для этого задают нагрузки от минимальной, соответствующей минимальному углу разворота лопастей, до максимальной. Порядок выполнения испытаний определен в п. 2.2.

А.5.1.4. После снятия рабочей характеристики комбинаторную связь разобщают и механизмом ручного управления производят установку различных открытий направляющего аппарата и углов разворота лопастей рабочего колеса. Пропеллерные характеристики должны быть сняты не менее чем при пяти углах разворота лопастей; при каждом угле устанавливают не менее пяти различных открытий направляющего аппарата. Для исключения влияния люфтов в механизмах управления регулирующими органами их перемещение при установке нужного режима следует производить всегда в одном направлении, например, всегда в сторону открытия.

А.5.1.5. Во время проведения испытаний для контроля за правильностью выполнения измерений. Рекомендуется производить построение контрольных графиков h = f(S) и P = f(S). Для контроля за ходом снятия пропеллерной характеристики необходимо вычислять индексное значение КПД без учета изменений напора и производить построение пропеллерных характеристик. Опыт по определению пропеллерной характеристики можно считать завершенным, когда на восходящей и нисходящей ветвях каждой характеристики находится не менее чем по две точки.

А.5.1.6. Для уточнения профиля кулачка комбинатора в полном диапазоне изменений напоров испытания должны быть выполнены не менее чем при трех значениях напоров.

А.5.1.7. При обработке результатов измерений следует учесть влияние изменений напора и при необходимости привести их к постоянному напору по формулам подобия. Производится уточнение контрольных графиков h = f(S) и P = f(S). При имеющемся разбросе точек все линии проводятся как осредняющие. Уточнение отдельных кривых может быть произведено путем дополнительного построения кривых h = f(j°) при S= const и Р = f(j°) при S = const; первые из них должны быть близки к прямым линиям, наклон которых возрастает с увеличением S. По контрольным графикам производят построение графиков h = f(P), представляющих собой монотонно-вогнутые функции.

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 23. Графики для определения координат оптимальной комбинаторной зависимости

А.5.1.8. Подсчитанные по формуле (5.20) значения индексных КПД наносят на график в координатах А и Р; при расчете используют уточненные значения измеренных параметров, а для уточнения формы пропеллерных характеристик могут быть взяты дополнительные точки с соответствующих кривых. По полученным пропеллерным характеристикам проводят огибающую являющуюся рабочей характеристикой гидроагрегата при оптимальной комбинаторной связи. Точки касания огибающей с пропеллерными характеристиками позволяют определить координаты оптимальной зависимости. Для этого на том же графике (см. рис. 25) строят кривые S = f(P), по которым находят значение S, соответствующее точке касания при известном значении j. По найденным координатам производят построение комбинаторной зависимости j° = f(S).

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 24. Пропеллерные расходные характеристики

А.5.1.9. Эффект оптимизации комбинаторной связи оценивают по разнице в КПД между огибающей и рабочей характеристикой, снятой при установленной комбинаторной связи.

А.5.1.10. Для построения серии комбинаторных зависимостей с необходимым шагом по напору выполняют построение графиков линий равных углов в координатах Н 4г 0-S(рис. 26), для чего используют комбинаторные зависимости, построенные по результатам испытаний. Из графиков по сечениям для нескольких постоянных напоров строят оптимальные комбинаторные зависимости (рис. 27).

Сравнивая полученные зависимости с установленными на турбине или заводскими, уточняют способ коррекции комбинаторных связей, которая может быть произведена либо исправлением профиля кулачка комбинатора, либо регулированием рычажных и зубчатых передач в элементах комбинаторной связи.

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 26. Графики линий равных углов в координатах Нг - S

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 27. Оптимальные комбинаторные зависимости для рабочего диапазона напоров

Приложение 1

ТИПОВАЯ ТЕХНИЧЕСКАЯ ПРОГРАММА ЭНЕРГЕТИЧЕСКИХ ИСПЫТАНИЙ ГИДРОАГРЕГАТА АБСОЛЮТНЫМ МЕТОДОМ

1. Цель испытаний. Определение действительных рабочей и расходной характеристик гидротурбины, сравнение измеренных значений КПД с гарантированными заводом-изготовителем; тарировка расходомерного створа спиральной камеры гидротурбины.

2. Подготовительные работы. Должен быть выполнен следующий объем работ: изготовление рамной конструкции для установки гидрометрических вертушек; монтаж вертушек на раме и разводка кабеля от вертушек до регистрирующего устройства; установка при остановленном гидроагрегате рамы с вертушками в мерном створе, который выбирается в зависимости от схемы подвода воды к ГЭС либо внутри турбинного трубопровода, либо в водоприемнике; проверка и продувка пьезометрических выводов из спиральной камеры, установка и проверка дифманометров и манометров; подключение ваттметра; проверка приборов для измерения уровней верхнего и нижнего бьефов. Все посты наблюдений и измерений должны быть оборудованы в соответствии с действующими «Правилами техники безопасности при эксплуатации водного хозяйства, гидротехнических сооружений и гидромеханического оборудования электростанций».

3. Содержание испытаний. Испытания должны выполняться в соответствии с «Международным кодом натурных приемо-сдаточных испытаний гидравлических турбин» и ГОСТ 8.439-81 «Расход воды в напорных трубопроводах».

Во время испытаний должны быть приняты меры к поддержанию стабильного режима работы по активной мощности и уровню напряжения на шинах ГЭС.

Порядок выполнения испытаний следующий: на испытуемом агрегате изменяют нагрузку ступенями в 5 - 7 %; на каждой ступени сохраняют постоянным положение регулирующих органов турбины в течение времени, устанавливаемого рабочей программой испытаний; выполняют измерение уровней верхнего и нижнего бьефов ГЭС, перепада давления и давления на входе в спиральную камеру, активной мощности и положения регулирующих органов, регистрируют показания гидрометрических вертушек. Измерения должны быть проведены не менее чем при десяти различных нагрузках агрегата.

Общее время испытаний при установке вертушек в трубопроводе составляет 4 - 6 ч, а при их установке в водоприемнике зависит от числа положений рамы и должно быть уточнено в рабочей программе испытаний.

В конце испытаний агрегат должен быть остановлен и рама с вертушками демонтирована.

Техническое руководство испытаниями осуществляет представитель организации, которая проводит испытания.

Рабочая программа испытаний утверждается техническим руководителем гидроэлектростанции, а при проведении испытаний головных образцов оборудования она подлежит предварительному согласованию с заводом-изготовителем.

Приложение 2

ТИПОВАЯ ТЕХНИЧЕСКАЯ ПРОГРАММА ЭНЕРГЕТИЧЕСКИХ ИСПЫТАНИЙ ГИДРОАГРЕГАТА ИНДЕКСНЫМ МЕТОДОМ

1. Цель испытаний. Определение формы рабочей характеристики (при нетарированной спиральной камере) или действительных рабочей и расходной характеристик (при тарированной спиральной камере); определение выполнения заводских гарантий по максимальной мощности турбины.

2. Подготовительные работы. Должен быть выполнен следующий объем работ: проверка и продувка пьезометрических выводов из спиральной камеры турбины, установка и проверка дифманометра и манометров; подключение ваттметра для измерения мощности генератора; проверка приборов для измерения уровней верхнего и нижнего бьефов.

Все посты наблюдений и измерений должны быть оборудованы в соответствии с действующими «Правилами техники безопасности при эксплуатации водного хозяйства, гидротехнических сооружений и гидромеханического оборудования электростанций» и «Правилами техники безопасности при эксплуатации электроустановок».

3. Содержание испытаний. Испытания должны выполняться в соответствии с «Международным кодом натурных приемо-сдаточных испытаний гидравлических турбин» и «Методическими указаниями по эксплуатационным энергетическим испытаниям гидроагрегатов». Во время испытаний должны быть приняты меры к поддержанию стабильного режима работы ГЭС по активной мощности. На испытуемом агрегате следует поддерживать постоянное значение cosj = 0. Порядок выполнения испытаний следующий: на испытуемом агрегате изменяют нагрузку ступенями в 5 - 7 %; на каждой ступени открытие регулирующих органов турбины сохраняют постоянным в течение 3 - 10 мин в течение которых выполняют измерение уровней верхнего и нижнего бьефов, перепада давления и давления на входе в спиральную камеру, активной мощности и положения регулирующих органов.

В пределах рабочего диапазона работы турбины устанавливают не менее десяти различных нагрузок.

Общая продолжительность испытаний составляет 3 - 4 ч.

По завершении испытаний должны быть демонтированы установленные приборы и агрегат сдан оперативному персоналу. Техническое руководство испытаниями осуществляет представитель организации, которая проводит испытания.

Рабочая программа испытаний утверждается техническим руководителем гидроэлектростанции, а при проведении испытаний головных образцов оборудования она подлежит предварительному согласованию с заводом-изготовителем.

Приложение 3

ТИПОВАЯ ТЕХНИЧЕСКАЯ ПРОГРАММА ЭНЕРГЕТИЧЕСКИХ ИСПЫТАНИЙ ПО ОПРЕДЕЛЕНИЮ ОПТИМАЛЬНОЙ КОМБИНАТОРНОЙ ЗАВИСИМОСТИ ГИДРОТУРБИН

1. Цель испытаний. Определение зависимости между открытием направляющего аппарата и углом разворота лопастей рабочего колеса, обеспечивающей работу гидротурбины при наивысших значениях КПД.

2. Подготовительные работы. Должен быть выполнен следующий объем работ: проверка и продувка пьезометрических выводов из спиральной камеры турбины, установка и проверка дифманометра и манометров; подключение ваттметра для измерения мощности генератора; проверка приборов для измерения уровней верхнего и нижнего бьефов.

Все посты наблюдений и измерений должны быть оборудованы в соответствии с действующими «Правилами техники безопасности при эксплуатации водного хозяйства, гидротехнических сооружений и гидромеханического оборудования электростанций» и «Правилами техники безопасности при эксплуатации электроустановок».

3. Содержание испытаний. Испытания должны выполняться в соответствии с «Международным кодом натурных приемо-сдаточных испытаний гидравлических турбин» и «Методическими указаниями по эксплуатационным энергетическим испытаниям гидроагрегатов». Во время испытаний должны быть приняты меры к поддержанию стабильного режима работы ГС по активной мощности. На испытуемом агрегате следует поддерживать постоянное значение cos. Испытания производят при работе агрегата под нагрузкой на ручном управлении при разобщенной комбинаторной связи.

Порядок испытаний следующий: при нескольких постоянных значениях угла разворота лопастей устанавливают различные открытия направляющего аппарата и, наоборот, при нескольких постоянных значениях открытия направляющего аппарата устанавливают различные углы разворота лопастей; каждый установленный режим выдерживают в течение 3 - 5 мин; производят измерение уровней верхнего и нижнего бьефов, перепада давления по дифманометру, активной мощности генератора и положения регулирующих органов. Общее время испытаний 4 - 6 ч.

По завершении испытаний должна быть восстановлена комбинаторная связь, демонтированы установленные приборы и агрегат сдан оперативному персоналу.

Техническое руководство испытаниями осуществляет представитель организации, которая проводит испытания.

Рабочая программа испытаний утверждается техническим руководителем гидроэлектростанции.

Приложение Б

(обязательное)

Методические указания по техническому обследованию узлов гидроагрегатов при их повреждениях

Б.1 Общие положения.

Анализ аварий и отказов гидромеханического оборудования гидроэлектростанций показывает, что наиболее повреждаемыми элементами оборудования являются: рабочие колеса гидротурбин, камеры рабочих колес поворотно-лопастных гидротурбин, направляющие подшипники гидротурбин и гидрогенераторов, подпятники гидроагрегатов и маслоприемники поворотно-лопастных гидротурбин. На их долю приходится порядка 2/3 всех нарушений и практически все аварии. Ниже изложены методические указания по обследованию упомянутых узлов при их повреждениях, а также указан минимальный объем данных по гидроагрегату и поврежденному узлу, необходимых для установления причин повреждения.

Б.2 Рабочее колесо и камера рабочего колеса гидротурбины.

Б.2.1 Общие данные по гидроагрегату, рабочему колесу гидротурбины и камере рабочего колеса гидротурбины:

Б.2.1.1 Тип турбины (ПЛ, Пр, Д, РО), тип и исполнение гидрогенератора.

Б.2.1.2 Мощность гидрогенератора, частота вращения, напор ГЭС.

Б.2.1.3 Дата ввода в эксплуатацию гидроагрегата.

Б.2.1.4 Сведения о перемаркировке гидроагрегата на повышенную мощность, на сколько была повышена мощность, дата перемаркировки.

Б.2.3.5 Основные данные рабочего колеса и камеры рабочего колеса:

- типоразмер турбины;

- диаметр рабочего колеса;

- число лопастей рабочего колеса;

- диаметр камеры рабочего колеса;

- толщина стенки камеры.

Б.2.1.6 Выполнение радиально-осевого рабочего колеса: литое, сварно-литое, цельное сварно-литое или составное (из половин).

Б.2.1.7 Материал ступицы, обода и лопастей радиально-осевого рабочего колеса; наличие защитной облицовки лопастей.

Б.2.1.8 Материал лопастей поворотно-лопастного или пропеллерного рабочего колеса; наличие защитной облицовки лопастей.

Б.2.1.9 Материал камеры рабочего колеса ПЛ или Пр гидротурбины: чугунное или стальное литье, стальной прокат и сварка, наличие облицовки из нержавеющей стали и др.

Б.2.1.10 Повреждения (или нарушения в работе), имевшиеся на данном рабочем колесе и камере рабочего колеса за последние 10 лет, их даты, краткое описание, причины.

Б.2.1.11 Мероприятия, проводившиеся на данном рабочем колесе в процессе эксплуатации с целью повышения его надежности: изменение геометрии лопастей или замена элементов конструкции (подрезка или подварка лопастей, забетонирование отъемного сегмента, замена части лопастей и т.д.), введение дополнительных деталей или устройств (подача воздуха непосредственно к местам кавитации на лопастях, установка антикавитационных планок на лопастях и т.д.) и др.

Б.2.1.12 Дата последнего ремонта рабочего колеса и камеры рабочего колеса, перечень и результаты работ, проводившихся при этом ремонте (дефектоскопия металла, балансировка рабочего колеса, если они проводились).

Б.2.1.13 Число часов работы гидроагрегата после последнего ремонта рабочего колеса и/или камеры рабочего колеса.

Б.2.2 Обстоятельства, предшествовавшие и сопутствовавшие повреждению:

Б.2.2.1 Режим работы гидроагрегата перед повреждением и при повреждении. В каких режимах и как длительно гидроагрегат работал перед повреждением. Была ли длительная работа в нерасчетных режимах: холостой ход, малые нагрузки, перегрузки, низкие напоры, нерасчетная высота отсасывания и др.

Б.2.2.2 Какие изменения режимов проводились непосредственно перед повреждением: набор или снятие нагрузки, пуск, останов, сброс нагрузки и т.д. Осуществлялись ли эти операции на автоматическом или на ручном управлении. Указать точное время проведения всех операций и время останова при повреждении.

Б.2.2.3 Каким образом был остановлен гидроагрегат при повреждении: действием защиты или оперативным персоналом.

Б.2.2.4 Особенности поведения гидроагрегата перед повреждением и при повреждении:

- имелись ли замечания к системе регулирования («качания» в системе, пульсация давления в маслопроводах, частое включение насосов МНУ и др.);

- отмечалось ли повышенное биение вала гидротурбины и повышенная вибрация узлов гидротурбины;

- появлялись ли посторонние шумы и стуки в проточной части гидротурбины или в других узлах гидроагрегата.

Б.2.3 Объем обследований рабочего колеса при повреждении:

Б.2.3.1 Визуальное обследование всех поверхностей рабочего колеса гидротурбины с регистрацией явных повреждений и нарушений: обломов кромок лопастей, смятий, вырыва облицовки лопастей, кавитационных повреждений, трещин в основном и наплавленном металле и др.: указывается место, площадь и глубина повреждений.

Б.2.3.2 Обследование крепежа деталей рабочего колеса: плотность затяжки и состояние болтов крепления лопастей ПЛ-гидротурбин, плотность соединения конуса и обтекателя рабочего колеса. При необходимости проведение ультразвукового контроля болтов крепления лопастей рабочего колеса ПЛ-гидротурбины.

Б.2.3.3 Проведение дефектоскопии металла лопастей на входных, выходных и периферийных кромках, в зоне гантельных переходов, а также в местах трещин, обнаруженных при визуальном обследовании на лопастях и других деталях рабочего колеса с использованием методов магнитопорошковой, цветной дефектоскопии, травления или других методов.

Б.2.3.4 Измерение зазоров между лопастями и камерой рабочего колеса поворотно-лопастной или пропеллерной гидротурбины и зазоров в лабиринтах радиально-осевой гидротурбины.

Б.2.3.5 При выеме рабочего колеса РО-гидротурбины производят визуальное обследование лабиринтных уплотнений, определение правильности формы(отсутствие овальности), проведение магнитопорошковой или другой дефектоскопии. При необходимости проводят проверку действительных геометрических размеров лопастной системы.

Б.2.3.6 При отломах кусков лопастей или болтов крепления лопастей ПЛ-гидротурбины производят тщательное обследование поверхности излома для выявления возможных металлургических дефектов и установления характера разрушения (усталостный, от перегрузки и др.).

При необходимости проводят лабораторные исследования металла для определения его прочностных свойств и соответствия заводским требованиям (химический анализ, определение механических свойств, металлографические исследования и др.).

Б.2.4 Объем обследований камеры рабочего колеса гидротурбины при повреждениях:

Б.2.4.1 Визуальное обследование всей поверхности камеры рабочего колеса и сопрягающего пояса с регистрацией повреждений облицовки: вырывов кусков облицовки, вмятин от действия посторонних предметов или от задевания лопастей за камеру, кавитационных разрушений, трещин и др. Указывают место, размеры и глубину повреждений облицовки. При сквозном разрушении облицовки или ее вырыве указывают состояние бетона в месте вырыва (глубину вырывания).

Б.2.4.2 Определение мест и размеров отставания облицовки от бетона и наличие пустот за облицовкой путем простукивания или инструментальным способом.

Б.2.4.3 Проведение дефектоскопии металла облицовки в местах наличия трещин и других локальных дефектов.

Б.2.4.4 Проведение обследований и анализа поверхности излома металла в местах вырыва облицовки для выявления характера разрушения (ударный, усталостный и пр.). При необходимости производится химический, металлографический и др. анализы металла облицовки.

Б.2.4.5 Определение фактической толщины облицовки камеры рабочего колеса в местах повреждения.

Б.2.4.6 Определение формы камеры рабочего колеса (выявление местных выступов, впадин или эллипсности) в горизонтальной плоскости по оси поворота лопастей или близкой к ней.

Б.2.4.7 Определение состояния съемного сегмента камеры рабочего колеса ПЛ-гидротурбины: обследование рабочей поверхности съемного сегмента (со стороны проточной части турбины); обследование крепежа (затяжка и состояние талрепов, домкратов, болтов по периметру); проверка состояния ребер жесткости.

Б.3 Направляющий подшипник гидротурбины

Б.3.1 Общие данные по гидроагрегату и турбинному подшипнику

Б.3.1.1 Тип гидротурбины, тип и исполнение гидрогенератора.

Б.3.1.2 Мощность гидротурбины, частота вращения.

Б.3.1.3 Основные данные направляющего подшипника гидротурбины:

- тип (кольцевой резиновый на водяной смазке, сегментный резиновый на водяной смазке, кольцевой баббитовый на масляной смазке, сегментный баббитовый на масляной смазке);

- диаметр расточки вкладышей (сегментов) подшипника; высота кольцевого подшипника, число вкладышей; расположение вкладышей в один или в два яруса по высоте;

- число и размеры сегментов (в сегментных подшипниках): высота, ширина;

- тип уплотнения вала над и под турбинным подшипником (торцевой резиновый, торцевой углеграфитовый, воротниковый и др.);

- величина эксцентриситета сегментов (для сегментных направляющих подшипников);

- система опирания сегментов в сегментных подшипниках (на сферический вкладыш, на болт со сферической поверхностью, на опору с цилиндрической поверхностью);

- способ регулировки зазоров (прокладками, болтовой, клиновой);

- нормативная величина зазора между валом и вкладышами (сегментами);

- способ смазки (самоциркуляция масла в ванне, принудительная циркуляция с помощью электронасоса, принудительная циркуляция с помощью трубок Пито и вращающейся маслованны, проточная система и др.);

- система охлаждения масла в турбинных подшипниках на масляной смазке (с помощью встроенных маслоохладителей, в охлаждающих отсеках обтекателя крышки турбины и др.).

Б.3.1.4 Дата ввода в эксплуатацию данного гидроагрегата; дата последнего капитального ремонта, перечень работ, проводившихся с турбинным подшипником при этом ремонте.

Б.3.1.5 Повреждения, имевшиеся на данном турбинном подшипнике ранее; краткое описание, причины.

Б.3.1.6 Мероприятия, проводившиеся на данном турбинном подшипнике с целью повышения его надежности (изменение или замена элементов конструкции, изменение системы смазки и охлаждения и др.).

Б.3.1.7 Какие операции и когда производились на данном турбинном подшипнике последний раз (регулировка зазоров, проверка и подтяжка крепежа, ревизия поверхностей трения и др.).

Б.3.1.8 В скольких сегментах или вкладышах баббитового подшипника установлены термосопротивления и термосигнализаторы. Какова величина уставок на сигнал и на останов гидроагрегата.

Б.3.1.9 Какими средствами осуществляется контроль смазки подшипника (расход воды или масла, давление воды или масла в камере подшипника, уровень воды или масла и др.).

Б.3.1.10 Какими средствами и с какой периодичностью осуществляется контроль биения вала у турбинного подшипника.

Б.3.2 Обстоятельства, предшествовавшие и сопутствовавшие повреждению:

Б.3.2.1 Режим работы гидроагрегата перед повреждением и при повреждении. В каких режимах и как длительно гидроагрегат работал перед повреждением (включая отклонения уровней бьефов от расчетных по напору и высоте отсасывания).

Б.3.2.2 Какие изменения режимов проводились непосредственно перед повреждением (набор или снятие нагрузки, перевод в режим СК или из режима СК, пуск, останов). Осуществлялись ли эти операции на автоматическом или ручном управлении. Указать точное время проведения всех операций и время останова при повреждении.

Б.3.2.3 Каким образом остановлен гидроагрегат при повреждении: действием защиты или оперативным персоналом.

Б.3.2.4 Особенности поведения гидроагрегата перед повреждением и во время повреждения: имелись ли замечания к работе системы регулирования, системы автоматики и другим системам. Не отмечалось ли повышенной вибрации и биения вала, появления постоянных стуков и шумов в гидроагрегате и т.п.

Б.3.2.5 Каково было значение параметров, характеризующих работу подшипника перед повреждением и при повреждении: биения вала, расхода воды на смазку и давления воды в камере турбинного подшипника на водяной смазке, температуры сегментов и масла подшипника на масляной смазке. Происходило ли изменение параметров быстро, медленно или они были постоянными.

Б.3.3 Объем обследования турбинного подшипника при повреждении:

Б.3.3.1 Измерение зазоров между валом и сегментами (вкладышами) перед разборкой подшипника.

Б.3.3.2 Проверка крепления корпуса подшипника к крышке

Б.3.3.3 Проверка состояния поверхностей трения сегментов (вкладышей) с отражением в формулярах мест и размеров местных повреждений (трещин, царапин, вырывов и выкрашиваний резины или баббита и др.), степени износа, отставаний резины или баббита от основания.

Б.3.3.4 Проверка состояния рубашки вала с отражением в формуляре местных повреждений, трещин, рисок, обрыва электрозаклепок и т.д.

Б.3.3.5 Определение степени износа рубашки вала подшипника на водяной смазке и проверка ее эллипсности.

Б.3.3.6 Проверка состояния опорных болтов или опорных вкладышей в сегментных подшипниках (смятие опорных поверхностей, состояние резьбы и пр.).

Б.3.3.7 Проверка состояния уплотнений турбинного подшипника: поверхностей трения резинового кольца и вращающегося диска в торцевых уплотнениях, состояние резины и ее крепления в манжетных уплотнениях, состояние элементов углеграфитового уплотнения и др.

Б.3.3.8 Проверка состояния фильтров в системе смазки резиновых подшипников, величины расхода воды на смазку, состояние запорных и регулирующих устройств, устройств выпуска воздуха из камеры подшипника.

Б.4 Маслоприемники

Б.4.1 Общие данные по гидроагрегату и маслоприемнику:

Б.4.1.1 Тип гидротурбины, тип и исполнение гидрогенератора, расположение направляющего подшипника(-ов) гидрогенератора.

Б.4.1.2 Мощность гидрогенератора, частота вращения.

Б.4.1.3 Основные данные маслоприемника:

тип маслоприемника (высокий с внешним расположением маслопроводов; пониженной высоты с внешним расположением маслопроводов; частично утопленный в полости вала с закрытым расположением маслопроводов); для последнего типа указать также типоразмер;

давление масла в системе регулирования;

внутренний диаметр подводящих маслопроводов;

внутренний диаметр сливного(-ых) маслопровода(-ов) из сливной ванны маслоприемника;

внешние диаметры штанг маслоприемника.

Б.4.1.4 Дата ввода в эксплуатацию данного гидроагрегата; дата последнего ремонта маслоприемника и перечень работ, проводившихся в нем при этом ремонте.

Б.4.1.5 Повреждения, имевшиеся на данном маслоприемнике за последние 10 лет (или нарушения в его работе), их даты, краткое описание, причины.

Б.4.1.6 Мероприятия, проводившиеся на данном маслоприемнике в процессе эксплуатации с целью повышения его надежности (изменение, замена или введение дополнительных элементов конструкции).

Б.4.2 Обстоятельства, предшествовавшие и сопутствовавшие повреждению:

Б.4.2.1 Режим работы агрегата перед повреждением и при повреждении. В каких режимах и как длительно агрегат работал перед повреждением.

Б.4.2.2 Какие изменения режимов проводились непосредственно перед повреждением: набор или снятие нагрузки, пуск, останов, режимы испытаний (сброс нагрузки, разобщение комбинаторной зависимости). Осуществлялись ли эти мероприятия на автоматическом или на ручном управлении. Указать точное время проведения всех операций и время останова при повреждении.

Б.4.2.3 Каким образом остановлен гидроагрегат при повреждении: действием защиты или оперативным персоналом.

Б.4.2.4 Особенности поведения гидроагрегата перед повреждением и при повреждении:

имелись ли замечания к системе регулирования («качания», плохой цикл работы насосов МНУ, повышение температуры масла в системе регулирования и др.);

наблюдались ли повышенные протечки масла или его выплескивание через сливную ванну маслоприемника;

отмечалось ли повышенная вибрация или биения вала гидрогенератора;

появлялись ли посторонние шумы и стуки на гидроагрегате, в каком месте и др.

Б.4.2.5 Каково было значение следующих параметров перед повреждением: биения вала генератора, цикла насосов МНУ, температуры масла в системе регулирования. Происходило ли изменение этих параметров перед повреждением и как (быстро, медленно).

Б.4.3 Объем обследования маслоприемника при повреждениях

Б.4.3.1 Измерение диаметров втулок и штанг; определение зазоров между ними.

Б.4.3.2 Измерение зазоров между сегментами и втулкой генераторного подшипника.

Б.4.3.3 Обследование втулок маслоприемника с отражением в акте и формуляре плотности их посадки на своих местах, наличия задиров, натиров и других дефектов на поверхности трения и др.

Б.4.3.4 Обследование штанг, выявление трещин, обломов у фланцевого соединения, плотности крепежа; выявление состояния поверхностей трения штанг с отражением в акте и формуляре выработки металла, полос бронзы, изменения цвета поверхности и других дефектов.

Б.4.3.5 Выявление состояния узлов механизма обратной связи.

Б.4.3.6 Определение зазоров по лабиринту маслоприемника.

Б.4.3.7 Проверка состояния изоляции маслоприемника от подшипниковых токов.

Б.5 Подпятник

Б.5.1 Общие данные гидроагрегата и подпятника

Б.5.1.1 Тип гидротурбины, тип и исполнение гидрогенератора, расположение подпятника, количество и места расположения направляющих подшипников.

Б.5.1.2 Мощность гидрогенератора, номинальная частота вращения.

Б.5.1.3 Основные данные подпятника:

тип (однорядный, двухрядный, на гидравлической опоре, на пружинном основании и т.д.);

конструкция сегментов (с баббитовой облицовкой или с ЭМП-покрытием, однослойные или двухслойные);

число сегментов;

радиальный и тангенциальный (по средней линии) размер сегментов;

наружный и внутренний диаметр диска;

общая нагрузка на подпятник (расчетная и действительная);

удельная нагрузка на сегменты Па (кгс/см2);

средняя окружная скорость;

величина тангенциального эксцентриситета;

тип масла в ванне подпятника.

Б.5.1.4 Дата ввода в эксплуатацию данного агрегата; дата установки в подпятнике ЭМП-сегментов; дата последнего капитального ремонта; указание работ, проводившихся в подпятнике при этом ремонте; число часов работы и число пусков агрегата с момента монтажа и с момента последнего капитального ремонта.

Б.5.1.5 Повреждения, имевшиеся на данном подпятнике ранее, их даты, краткое описание, причины.

Б.5.1.6 Мероприятия, проводившиеся на данном агрегате с целью повышения надежности подпятника (изменения элементов конструкции подпятника, введение ограничений в режимы работы агрегата и др.)

Б.5.1.7 В скольких сегментах подпятника (и в каких) установлены термосопротивления (для периодической регистрации температуры) и в скольких сегментах - термосигнализаторы (для сигнализации и защиты). Каковы величины уставок на сигнал и останов агрегата.

Б.5.1.8 Проводились ли мероприятия по повышению эффективности термоконтроля ЭМП-сегментов (прорези в ЭМП-покрытии и др.) и когда.

Б.5.2 Обстоятельства, предшествовавшие и сопутствовавшие повреждению

Б.5.2.1 Режим работы гидроагрегата перед повреждением и в момент повреждения. Как длительно и при каких режимах гидроагрегат работал перед повреждением.

Б.5.2.2 Какие изменения режимов проводились непосредственно перед повреждением (набор или снятие нагрузки, перевод в режим СК или обратно, пуск, останов). Осуществлялись ли эти операции на автоматическом или ручном управлении. Указать точное время проведения всех операций и время отключения и останова агрегата при повреждении подпятника. Каким образом остановлен агрегат при повреждении: действием защиты или дежурным персоналом.

Б.5.2.3 Особенности поведения агрегата перед и во время повреждения подпятника: имелись ли замечания к работе системы регулирования, автоматики, торможения и другим системам. Не отмечалось ли повышенной вибрации и повышенного биения вала агрегата, появления посторонних стуков и шумов в агрегате, ненормального изменения уровня масла в ванне подпятника и т.п.

Б.5.2.4 Какова была температура сегментов подпятника и масла в ванне во всех точках измерения в течение 2-х суток до повреждения, непосредственно перед повреждением и при повреждении. Каков был характер изменения температуры перед повреждением: медленное повышение, быстрое повышение, постоянная величина. Каковы были значения температуры подпятников других (хотя бы двух соседних) гидроагрегатов ГЭС.

Б.5.3 Объем обследования подпятника. При обследовании поврежденного подпятника должно быть проверено и отражено следующее:

Б.5.3.1 Состояние рабочей поверхности сегментов. Должны быть отражены в формуляре и указаны места и размеры повреждений: подплавлений, выкрашиваний и выпучивания баббита, истирание, натиры, риски и другие дефекты на рабочей поверхности; степень износа рабочей поверхности ЭМП-сегментов по контрольным рискам или по измерениям толщины сегментов в контрольных точках; состояние скосов на набегающей и сбегающей кромках фторопластовой поверхности ЭМП-сегментов; наличие и места отставания баббита от стального основания; нарушение припайки ЭМП-вкладыша к стальному основанию сегмента и другие возможные нарушения.

Б.5.3.2 Состояние зеркальной поверхности диска. Визуальное обследование диска (с отражением наличия рисок, царапин, каверн, помутнения и других дефектов зеркальной поверхности); при необходимости определение шероховатости методом слепков или другим методом. Определение волнистости (макронеровности) зеркальной поверхности диска путем прокрутки или с помощью поверочной линейки.

Б.5.3.3 Состояние прокладок между диском и втулкой (при их наличии). Наличие зазоров между втулкой и диском подпятника при поднятом на тормозах и при опущенном роторе путем осмотра и промеров по контуру. Проверка плотности затяжки болтов крепления диска к втулке.

Б.5.3.4 Состояние тарельчатых опор. Обследование с целью выявления наличия или отсутствия трещин на верхней поверхности; определение состояния нижней поверхности в месте контакта с опорным болтом с регистрацией глубины и диаметра вмятины от сферической головки болта. При необходимости проверка на прессе прогиба опор.

Б.5.3.5 Состояние головок опорных болтов. Определение величины смятия сферической поверхности болтов или вкладышей в болты с помощью специального шаблона и щупа. При необходимости проверка твердости головок опорных болтов или вкладышей, определение состояния резьбы болтов и втулок.

Б.5.3.6 Определение в двухрядных подпятниках состояния поверхностей цилиндрических опор и сопряженных с ними поверхностей балансиров.

Б.5.3.7 Наличие вмятин и натиров на упорах, ограничивающих радиальное и тангенциальное смещение сегментов, и на сегментах в местах соприкосновения с упорами. Глубина и расположение вмятин и натиров.

Б.5.3.8 Величина действительных зазоров между сегментами и упорами (в тангенциальном и радиальном направлении).

Б.5.3.9 Свобода качания сегментов (отсутствие защемления сегментов между упорами), а в двухрядных подпятниках - свобода качания балансиров.

Б.5.3.10 Действительная величина тангенциального и радиального эксцентриситета сегментов и соответствие его нормативным значениям.

Б.5.3.11 Расстояние от зеркальной поверхности диска подпятника на гидравлической опоре до основания в фиксированных точках («маяках») для проверки герметичности упругих камер.

Б.5.3.12 Равномерность осадки упругих камер в подпятниках на гидравлических опорах.

Б.5.3.13 Проверка изоляции между диском и втулкой подпятника в генераторах подвесного исполнения.

Б.5.3.14 Анализ масла в ванне подпятника с целью определения механических примесей, воды и пр.

Б.5.3.15 Равномерность распределения нагрузки между сегментами подпятника.

Б.5.3.16 Контроль прилегания корпуса подпятника к дну маслованны и дна маслованны к опоре.

Б.6 Направляющие подшипники генератора

Б.6.1 Общие данные гидроагрегата и направляющих подшипников гидрогенератора

Б.6.1.1 Тип и исполнение гидрогенератора, тип гидротурбины. Количество и место расположения направляющих подшипников гидрогенератора.

Б.6.1.2 Мощность гидрогенератора, частота вращения.

Б.6.1.3 Основные данные направляющего подшипника гидрогенератора (если подшипников гидрогенератора два, то данные привести отдельно по каждому подшипнику);

диаметр расточки сегментов (диаметр втулки вала);

число сегментов и их размеры (высота, ширина);

материал рабочей поверхности сегментов (баббит, фторопласт, др.);

система опирания сегментов (на сферическую поверхность опорного болта или вкладыша, на цилиндрическую поверхность опорного сухаря);

способ регулировки зазоров (болтовой, клиновой, прокладками);

нормативная величина зазоров между сегментами и втулкой вала;

нормативная величина эксцентриситета установки сегментов;

способ выполнения втулки (откована заодно с валом или насажена на вал); указать, если направляющий подшипник находится в одной ванне с подпятником и его сегменты размещены вокруг цилиндрической поверхности втулки подпятника;

способ смазки (самоциркуляция масла в ванне, принудительная циркуляция с помощью насоса и др.);

система охлаждения масла (встроенными охладителями, внешними охладителями, через стенки маслованны без охладителей);

тип масла в ванне подшипника(-ов).

Б.6.1.4 Дата ввода в эксплуатацию данного гидроагрегата; дата последнего ремонта и перечень работ в генераторном подшипнике, проводившихся при этом ремонте.

Б.6.1.5 Повреждения, имевшиеся на данном генераторном подшипнике ранее; их дата, краткое описание, причины.

Б.6.1.6 Мероприятия, проводившиеся на данном генераторном подшипнике ранее с целью повышения его надежности (изменение или замена элементов конструкции, системы смазки, охлаждения и др.).

Б.6.1.7 В скольких (и каких) сегментах установлены термосопротивления и термосигнализаторы. Какова уставка на сигнал и на останов гидроагрегата.

Б.6.1.8 Какими средствами и с какой периодичностью осуществляется контроль биения вала у генераторного(-ых) подшипника(-ов).

Б.6.2 Обстоятельства, предшествовавшие и сопутствовавшие повреждению:

Б.6.2.1 Режим работы гидроагрегата перед повреждением и в момент повреждения. Имелись ли какие-либо ненормальные, нерасчетные режимы и нарушения в работе гидроагрегата перед повреждением: короткие замыкания, сбросы нагрузки, вынужденная работа в нерасчетных режимах (например, при малых нагрузках) и т.д.

Б.6.2.2 Какие изменения режимов были непосредственно перед повреждением (набор или снятие нагрузки, перевод в режим СК или из режима СК, пуск, останов). Осуществлялись ли эти операции на автоматическом или ручном управлении. Точное время проведения этих операций и время останова при повреждении. Каким способом остановлен гидроагрегат: действием защиты или оперативным персоналом.

Б.6.2.3 Особенности поведения агрегата перед повреждением и во время повреждения: имелись ли замечания к работе системы регулирования, системы автоматики и другим системам. Не отмечалось ли повышенной вибрации и биения вала, появления постоянных стуков и шумов в агрегате, ненормального изменения уровня масла в ванне подшипника и т.п.

Б.6.2.4 Каково было значение температуры сегментов и масла генераторного подшипника, а также биения вала гидрогенератора в течение двух суток до повреждения, непосредственно перед повреждением и при повреждении. Отмечено ли изменение температуры и биения, происходило ли оно быстро, или медленно.

Б.6.3 Объем обследования генераторного подшипника при повреждении:

Б.6.3.1 Измерение зазоров между валом и сегментами перед разборкой подшипника.

Б.6.3.2 Проверка состояния поверхностей трения сегментов с отражением в формуляре зон подплавлений, натиров, выкрашиваний баббита, царапин и т.д.

Б.6.3.3 Проверка фактической величины эксцентриситета установки сегмента.

Б.6.3.4 Определение плотности сцепления баббита со стальным основанием; указание мест и размеров зон отставания баббита.

Б.6.3.5 Проверка состояния рабочей поверхности втулки подшипника с указанием мест и размеров нарушений поверхности: рисок, язвин, коррозии, помутнений, следов баббита и др.

Б.6.3.6 Проверка состояния изоляции от подшипниковых токов.

Б.6.3.7 Проверка состояния опорных болтов или опорных вкладышей (смятие сферических или цилиндрических поверхностей, нарушение резьбы и др.), а также сопряженных с ними элементов со стороны сегмента.

Б.6.3.8 Проверка плотности посадки на вал втулки генераторного подшипника.

Б.6.3.9 Проверка состояния уплотнений маслованны.

Приложение В

(обязательное)

Рекомендации по освидетельствованию гидроэнергетического оборудования ГЭС при реконструкции и техническом перевооружении

В.1. Организация освидетельствования

В.1.1. Освидетельствование гидроэнергетического оборудования предполагает проведение комплекса работ, на основании которых может быть дана объективная оценка состояния оборудования в целом и отдельных его узлов, сделаны выводы о возможности его дальнейшей эксплуатации или необходимости замены в процессе модернизации или реконструкции.

В.1.2. Назначение сроков начала работ и формирование комиссий по освидетельствованию основного и вспомогательного оборудования осуществляет собственник (управляющая компания) ГЭС. Он же осуществляет финансирование этих работ и направляет заявки организациям и лицам, привлекаемым к освидетельствованию.

В.1.3. Работы по освидетельствованию состояния гидроэнергетического оборудования должны производиться комплексно в соответствии с программой, разработанной собственником с привлечением при необходимости специализированной организации с привлечением соответствующих специалистов отрасли. В программе должны быть предусмотрены следующие основные этапы работ:

- оценка технического состояния основного и вспомогательного гидроэнергетического оборудования на основании изучения эксплуатационной и ремонтной документации;

- анализ затрат на эксплуатацию и ремонт этого оборудования;

- проведение осмотров и испытаний отдельных узлов, систем, и гидроагрегата в целом для получения дополнительной информации о состоянии оборудования, полученной на основании изучения эксплуатационной и ремонтной документации гидроагрегатов;

- контроль состояния металла основных узлов оборудования с целью оценки остаточного ресурса его работы.

В.1.4. Результаты испытаний и работ по обследованию оборудования в объеме п. В.3 настоящих рекомендаций оформляются в соответствии с перечнем п. В.2 и передаются техническому руководителю ГЭС.

В.1.5. Технический руководитель ГЭС совместно с управляющей компанией организует представительное обсуждение результатов освидетельствования совместно с представителями заводов-изготовителей основного оборудования, ремонтных, научных и проектных организаций для принятия решения об объеме реконструкции или модернизации оборудования ГЭС.

В.1.6. При реконструкции многоагрегатных ГЭС, гидроагрегаты которых значительно отличаются по срокам пуска, конструкции, либо выполнены разными заводами-изготовителями, освидетельствование производится по группам гидроагрегатов одной серии.

В.2 Перечень документов, оформляемых по результатам освидетельствования

По результатам выполненных при освидетельствовании работ оформляются следующие документы:

В.2.1 Основные технические данные по ГЭС, гидротурбинному и гидрогенераторному оборудованию (Приложение 1).

В.2.2 Сведения об использовании и ремонтах гидроагрегатов (Приложение 2).

В.2.3 Эксплуатационные данные по ГЭС за последние 15 лет, гистограмма режимов работы (Приложение 3).

В.2.4 Сведения по произведенным заменам и реконструкциям узлов, перемаркировке гидроагрегатов (Приложение 4).

В.2.5 Сведения о натурных энергетических испытаниях гидроагрегатов (Приложение 5).

В.2.6 Натурные эксплуатационные энергетические характеристики гидротурбины (Приложение 6).

В.2.7 Сведения о вибрационных характеристиках и биении вала гидроагрегата, в соответствии с Приложением «И» настоящего Стандарта (Приложение 7).

В.2.8. Результаты визуального и инструментального освидетельствования проточной части гидротурбины (Приложение 8).

В.2.9 Результаты визуального и инструментального освидетельствования рабочего колеса, направляющего аппарата, подшипника, вала и маслоприемника гидротурбины (Приложение 9).

В.2.10 Результаты технического обследования (испытаний) системы регулирования гидротурбины и маслонапорной установки (Приложение 10).

В.2.11 Результаты обследования (измерений и испытаний) статора гидрогенератора (Приложение 11).

В.2.12. Результаты обследования (измерений и испытаний) ротора гидрогенератора (Приложение 12).

В.2.13 Результаты освидетельствования подпятника и подшипников гидроагрегата (Приложение 13).

В.2.14 Результаты обследования системы возбуждения гидрогенератора (Приложение 14).

В.2.15 Результаты освидетельствования и технического обследования оборудования технических систем гидроагрегата (приложение 15):

В.2.15.1 Системы технического водоснабжения.

В.2.15.2 Система технического воздухоснабжения (пневмохозяйство).

В.2.15.3 Система осушения проточной части гидротурбины, откачки и дренажа.

В.2.15.4 Система пожаротушения гидроагрегата.

В.2.15.5 Система измерения параметров режимов работы гидротурбины.

В.2.16 Результаты оценки состояния системы автоматического управления и защиты гидроагрегата (Приложение 16).

В.2.17 Результаты оценки состояния и функциональных возможностей АСУ ТП ГЭС и системы мониторинга и эксплуатационного контроля параметров вибрации, биения вала, температуры элементов гидроагрегата (Приложение 17).

В.3 Объем работ по освидетельствованию основных узлов гидроагрегата

В.3.1 Гидротурбина

В.3.1.1. Спиральная камера и статор.

Оценка состояния спиральной камеры включает в себя осмотр внутренней поверхности спиральной камеры, при этом особо тщательно осматриваются швы приварки облицовки к поясам статора. Простукиванием определяют плотность прилегания облицовки спиральной камеры к основному бетону, а в случае наличия заклепочных соединений - плотность заклепочных соединений. Измерение толщины облицовки в случае повреждения ее поверхности производят ультразвуковым толщиномером либо высверливанием в нескольких точках в зоне сопряжения спиральной камеры и поясов статора и на периферийном радиусе сечения спиральной камеры. Измерение толщины металлической оболочки спиральной камеры производят на участках, очищенных механическим способом от минеральных отложений и ржавчины.

Контроль на наличие трещин в металлической оболочке и сварных соединениях спиральной камеры производят на нескольких участках с применением магнитопорошковой дефектоскопии.

Визуальный контроль состояния статора гидротурбины проводят для определения степени абразивного износа и наличия явных трещин. При необходимости контроль неразрушающими способами (ЦД или МПД) производят для колонн статора в зоне их сопряжения с поясами статора.

Объем контроля металла неразрушающими методами определяют по результатам визуального контроля, обычно производят контроль нескольких зон шириной 100 мм у верхнего и нижнего поясов (Приложение 8, п. 1, 2).

В.3.1.2. Крышка турбины

Производят визуальный и измерительный контроль состояния крышки турбины для оценки степени кавитации, коррозионного, абразивного износа, состояния сварных и болтовых соединений (Приложение 8, п. 3).

В.3.1.3. Камера рабочего колеса (КРК)

Фактическое состояние КРК определяют по результатам визуального и измерительного контроля в ходе которого устанавливают: наличие трещин на поясах, особенно в зоне приварки ребер обечайки, степень кавитационных разрушений, площадь зон неплотного прилегания обечайки к основному бетону простукиванием (приложение 8, п. 4).

В.3.1.4. Рабочее колесо

Контроль металла рабочих колес гидротурбин проводят в соответствии с Приложением «Г» к настоящему Стандарту. Контроль состояния деталей механизма разворота лопастей проводится визуально и измерительными инструментами с целью оценки их износа и отсутствия трещин. Оценка износа цапф лопастей и втулок проводится инструментальным способом в соответствии с Приложением 9, п. 1.

В.3.1.5. Направляющий аппарат и сервомоторы

Состояние направляющего аппарата оценивают по результатам визуального контроля и инструментальных измерений, на основании которых устанавливается степень кавитационного, абразивного и коррозионного износа лопаток, верхнего и нижнего колец направляющего аппарата, состояние подшипников, износ цапф лопаток, вкладышей, уплотнений цапф, уплотнений лопаток (по перу и торцам).

При этом обращают внимание на наличие трещин в зоне перехода лопаток к цапфам и по сварным швам регулирующего кольца, а также на состояние трущихся поверхностей (натиры, разрушения). При необходимости производят выборочный контроль травлением на наличие трещин на рычагах, серьгах, накладках, штоках сервомоторов (Приложение 9, п. 2).

В.3.1.6. Турбинный подшипник

Оценку состояния вкладышей и трущихся поверхностей подшипника, смятия опорных элементов (клиньев, болтов), состояния крепежных болтов производят визуально. При необходимости проводят контроль травлением на наличие трещин на сухарях, по сварным швам, на корпусе (Приложение 9, п. 3).

В.3.1.7. Вал турбины

Контроль металла вала на наличие трещин проводят травлением в зоне фланцев, особенно в зоне отверстий под болты. Состояние шейки или облицовки вала в зоне турбинного подшипника оценивают на основании визуального и измерительного контроля (Приложение 9, п. 4).

В.3.1.8. Маслоприемник ПЛ-гидротурбины

Оценку состояния маслоприемника производят по величине протечек масла и инструментальному контролю износа штанг и подшипников в соответствии с Приложением 9, п. 5.

В.3.1.9. Маслонапорная установка

Состояние МНУ оценивают на соответствие требованиям Ростехнадзора по результатам обследования на наличие трещин сварных швов и измерения толщины стенок. Оценивают также состояние и производительность насосов МНУ, обратных клапанов и запорной арматуры (Приложение 10).

В.3.1.10. Регулятор частоты вращения

Оценку состояния регулятора производят по результатам испытаний системы регулирования в соответствии с Приложением «Ж» к настоящему Стандарту в объеме, устанавливаемом программой специализированной организации. Кроме того, производят оценку состояния маятников гидромеханических регуляторов, степени изношенности поверхностей трения игл, букс, золотников, редукторов колонки регулятора, достаточность перестановочных усилий сервомоторов направляющего аппарата (Приложение 10).

В.3.2. Гидрогенератор

В.3.2.1. Статор

Оценку состояния стальных конструкций статора производят на основании осмотра узлов крепления сердечника, спинки сердечника и стыков секторов статора, фундаментных креплений, а также на основании результатов вибрационных испытаний (Приложение 7).

Оценка состояния активной стали статора (прессовки сердечника, наличие коробления пакетов, ослабления крепления вентиляционных распорок, наличие контактной коррозии, местных перегревов) производится на основании осмотров, а также проверок по циркуляру Э-8/80 («О контроле состояния прессовки зубцов сердечника статора гидрогенераторов, СТЭ, 1980 г.), испытаний стали статора по определению удельных потерь в соответствии с «Типовой инструкцией по эксплуатации генераторов на электростанциях» (РД 34.45.501-88, СТЭ, М, 1989 г.) и испытаний на нагревание в соответствии с «Методическими указаниями по проведению испытаний на нагревание генераторов» (МУ 34-70-069-84, СТЭ, М, 1984 г.) с учетом «Норм испытания электроооборудования», 1978 г.

Оценку состояния крепления стержней, бандажей, поясных соединений и термореактивной изоляции обмотки производят на основании осмотров и испытаний, включающих измерение сопротивления обмоток при постоянном токе в практически горячем состоянии (по ГОСТ 11828-86 с учетом «Норм испытания электрооборудования», 1978 г.) испытаний на внезапное короткое замыкание для оценки механической прочности машины, а также для определения электромагнитных параметров по ГОСТ 10169-77, измерений вибрации лобовых частей по циркуляру Ц-01-84(Э), испытаний электрической прочности изоляции обмоток относительно корпуса и между обмотками по ГОСТ 11828-86, испытаний электрической прочности междувитковой изоляции обмоток по ГОСТ 11828-86 и ГОСТ 183-74 с учетом «Норм испытания электрооборудования», 1987 г., измерений сопротивления изоляции относительно корпуса и между обмотками по ГОСТ 11828-86 и «Норм испытания электрооборудования», 1978 г., определения коэффициента абсорбции для оценки влажности изоляции в соответствии с «Типовой инструкцией по эксплуатации генераторов на электростанциях», РД 34.45.501-88, СТЭ, М, 1989 г.

Контроль пайки лобовых частей и перемычек стержней производят неразрушающим методом.

Определение зазора между статором и ротором и формы их поверхности производят на основании обмеров и анализа осциллограмм Э.Д.С. витка в зазоре.

Оценку состояния системы охлаждения обмотки с непосредственным водяным охлаждением производят на основании осмотров, измерения сопротивления и расхода дистиллята, эффективности охлаждения в летний период.

Производят оценку состояния фторопластовых шлангов, изоляционных крепежных элементов, насосов, фильтров, регуляторов.

Производят оценку состояния воздухоохладителей.

Оценку достаточности и надежности схемы охлаждения производят на основании данных опыта ее эксплуатации (Приложение 11).

В.3.2.2. Ротор

Оценку состояния остова, обода и полюсов производят на основании результатов осмотра, визуального контроля на наличие трещин сварных соединений ротора, величины проседания обода на спицах, состояния крепления полюсов на ободе, а также по результатам измерения Э.Д.С. витка в зазоре между ротором и статором.

Оценку состояния изоляции паяных соединений, наличия местных перегревов обмотки возбуждения и демпферной обмотки, а также контроль наличия межвитковых замыканий в обмотках полюсов производят на основании результатов испытаний, включающих измерения сопротивления обмотки переменному (по ГОСТ 10169-77) и постоянному току (по ГОСТ 11828-86), измерения кажущегося сопротивления при переменном токе каждого полюса ротора, а также измерения температуры в соответствии с ГОСТ 11828-86 и «Методическими указаниями на нагревание генераторов», МУ 34.70.069-84, СТЭ, М, 1984 г. и определения номинального тока возбуждения, номинального напряжения и регулировочной характеристики по ГОСТ 10169-77.

Состояние лопаток вентиляторов воздушной системы охлаждения оценивают по данным визуального контроля (Приложение 12).

В.3.2.3. Подпятник

Производят проверку шероховатости зеркальной поверхности диска подпятника, визуальную оценку состояния поверхностей трения ЭМП-сегментов. При необходимости проводят испытания по определению уровней напряжений в тарельчатых опорах и опорных болтах с последующей оценкой остаточного ресурса по усталостной прочности. Рассматривают возможность перевода подпятника с ЭМП-сегментами на гидравлической опоре на жесткое опирание согласно «Методическим указаниям по проведению натурных испытаний подпятников гидротурбинных агрегатов», Москва, СТЭ, 1980 г. Контролируют наличие трещин у тарельчатых опор и опорных болтов, сварных соединений стола подпятника, проверяют уровень изоляции подпятника.

Производят оценку состояния маслоохладителей (Приложение 13).

В.3.2.4. Подшипник генератора

Производят визуальную оценку состояния трущихся поверхностей (сегментов, шейки вала), смятия опорных элементов (болтов, вкладышей), крепежных элементов. Визуальный контроль наличия трещин по сварным швам опорных элементов и корпуса, при необходимости проводят контроль травлением.

Оценивают состояние маслоохладителей, трубопроводов, запорной арматуры, насосов и двигателей принудительной системы циркуляции масла, а также удобство эксплуатации и недостатки системы охлаждения (Приложение 13).

B.3.2.5. Система возбуждения

При наличии электромашинных возбудителей при реконструкции или модернизации гидрогенератора производят их замену на систему тиристорного возбуждения.

Оценку состояния системы тиристорного возбуждения производят на основании осмотров, изучения эксплуатационной документации, измерений сопротивленияизоляции, проверок тиристорных преобразователей (отклонений параметров, характеристик), а также испытаний системы возбуждения в режиме холостого хода и при работе генератора в сети.

Производят оценку состояния системы водяного охлаждения тиристоров (насосов, трубопроводов, фильтров) с учетом данных опыта эксплуатации и выявленных при эксплуатации недостатках (компоновке, эффективности, надежности) (Приложение 14).

В.3.3. Вспомогательное оборудование

Оценку состояния вспомогательного оборудования производят на основании осмотров, изучения эксплуатационной документации и проведения необходимых испытаний.

В.3.3.1. Система технического водоснабжения

Оценивается состояние трубопроводов, запорной арматуры, фильтров и насосов (эжекторов), величина расхода воды в системе ТВС и работа устройств ТВС (насосов, эжекторов, сифонов и др.), а также состояние и достаточность средств автоматизации и регулирования расхода охлаждающей воды в зависимости от температуры воды. Определяется необходимость изменения схемы ТВС с учетом мнения эксплуатационного персонала (Приложение 15, п. 1).

В.3.3.2. Система технического воздухоснабжения

Оценивается состояние и производительность компрессоров высокого и низкого давления, состояние запорной арматуры, приводов и средств автоматизации. Состояние системы перевода агрегата в режим СК (если есть) оценивается в соответствии с разделом 5 «Методических указаний по переводу гидроагрегатов в режим синхронного компенсатора», СПО Союзтехэнерго, М 1986 г. (Приложение 15, п. 2).

В.3.3.3. Система осушения проточной части гидротурбины и откачки дренажа

Оценивается величина фильтрации через уплотнения затворов и работа насосов во время осушения проточной части турбины. Оценивается состояние откачивающих воду насосов и эжекторов, состояние сливных трубопроводов (наличие и глубина коррозионных повреждений на открытых участках), состояние запорной арматуры и привода, степень их автоматизации. Производится оценка (по сравнению с проектной) объема поступления дренажной воды в здание ГЭС (в том числе на крышку турбины) и работы откачивающих устройств с крышки турбины и средств автоматизации в соответствии со стандартом организации ГЭС (Приложение 15, п. 3).

В.3.3.4. Система пожаротушения гидроагрегата

Оценивается состояние устройств пожаротушения (датчики, трубопроводы, запорная арматура, привод и т.д.) и их соответствие современным требованиям по компоновке, надежности и автоматизации (Приложение 15, п. 4).

В.3.3.5. Система измерения гидравлических параметров гидротурбины

Оценивается состояние, надежность, достаточность и соответствие современным требованиям аппаратуры и схем системы измерений. (Приложение 15, п. 5).

Приложение 1

Основные технические данные по _______________ ГЭС, гидротурбинному и гидрогенераторному оборудованию

Наименование показателя

Значение

1. Характеристика ГЭС: состав гидросооружений, длина напорного фронта, расчетные и наиболее характерные напоры, объем водохранилища

2. Установленная мощность ГЭС, МВт

3. Количество гидроагрегатов

4. Первичная схема электрических соединений

5. Характерный режим работы (пиковый, базовый), его изменение во времени

6. Единичная мощность гидроагрегата, МВт

7. Типоразмер турбины

8. Завод-изготовитель турбины

9. Год выпуска турбины

10. Напоры: минимальный, м

расчетный, м

максимальный, м

11. Расход воды через турбину при расчетном напоре, м/с

12. Мощность турбины при расчетном напоре, МВт

13. Требуемая высота отсасывания турбины при расчетном напоре и максимальной нагрузке, м

14. Число лопастей рабочего колеса

15. Число лопаток направляющего аппарата

16. Количество и тип сервомоторов направляющего аппарата

17. Тип направляющего подшипника турбины

18. Тип гидрогенератора

19. 3авод-изготовитель гидрогенератора

20. Год выпуска гидрогенератора

22. Номинальная частота вращения ротора, об/мин

23. Напряжение статора, кВ

24. Ток ротора, А

25. Коэффициент мощности

26. Диаметр расточки статора, мм

количество секторов, шт.

27. Тип обмотки статора

28. Тип изоляции обмотки статора

29. Число полюсов ротора

30. Тип изоляции обмоток ротора

31. Тип системы охлаждения статора и ротора

32. Тип подпятника (краткое описание)

33. Максимальная нагрузка на подпятник, т

34. Удельная нагрузка на подпятник, МПа

35. Тип подшипников гидрогенератора (краткое описание)

36. Тип системы возбуждения

37. Тип регулятора частоты вращения

38. Типоразмер МНУ

39. Гарантии регулирования:

- заброс оборотов при сбросе полной нагрузки

- заброс давления в спиральной камере при сбросе полной нагрузки

- вакуум в отсасывающей трубе

40. Тип АСУ ТП

Приложение 2

Сведения об использовании и ремонтах гидроагрегатов ____________________ ГЭС на_________ г.

Ст. № гидроагрегата

Дата ввода в эксплуатацию

Завод изготовитель турб/генер

Число часов работы с начала эксплуатации

Выработка эл. энергии с начала эксплуатации

Количество пусков с начала эксплуатации

Годы капит. ремонтов

Структура ремонтного цикла периодичность КР, ТР, СР

Приложение 3

Эксплуатационные данные по ___________________ГЭС __________________за последние 15 лет __________________

Год

Среднегодовой напор, м

Выработка эл. энергии с начала эксплуатации

Число часов использования

Коэффициент технического использования

Количество аварий и отказов

В работе

В ремонте

В резерве

Приложение 4

Сведения по произведенным заменам и реконструкциям оборудования

Замена или реконструкция оборудования (название узла, краткое содержание и год проведения работ)

№ гидроагрегата

1

2

3

4

Приложение 5

Сведения о натурных энергетических испытаниях гидроагрегатов

Дата испытаний

Исполнитель

Необходимость проведения испытаний

Краткое содержание и результатов выполненных работ

Приложение 6

Натурные энергетические характеристики гидротурбины

1. Эксплуатационная энергетическая характеристика гидроагрегата: график, когда и кем получена.

2. Эксплуатационная расходная характеристика гидроагрегата: график, когда и кем получена.

3. Сведения по обеспеченным высотам отсасывания.

4. Сведения по средневзвешенному напору (напору наибольшей продолжительности или напору при котором обеспечивается наибольшая выработка).

Приложение 7

Сведения о вибрационных характеристиках и биении вала гидроагрегата (по циркуляру № Ц-01-96(Э))

Дата испытаний

исполнитель

Необходимость проведения испытаний

Объем испытаний, краткое содержание и результаты выполненных работ (наличие ограничений в зависимости от напора и нагрузки)

Приложение 8

Результаты визуального и инструментального обследования проточной части гидротурбины

Перечень контролируемых параметров по узлам

Состояние узлов по указанным параметрам

1. Спиральная камера

- наличие трещин в облицовке (визуально)

- оценка состояния бетона визуально (для бетонных спиральных камер)

- толщина стенок металлической камеры

- плотность прилегания облицовки к бетону простукиванием

2. Статор турбины

- наличие трещин в колоннах статора (визуальный контроль)

- степень абразивного износа и наличие трещин на поверхности колонн и поясов (визуальный контроль)

3. Крышка турбины

- состояние крышки турбины по кавитационным разрушениям наплавкам и трещинам (визуальный контроль)

4. Камера рабочего колеса

- наличие трещин облицовки (визуально)

- степень кавитационных и других разрушений (площадь, глубина)

- прилегание облицовки к основному бетону простукиванием

5. Отсасывающая труба

- состояние бетона (визуально)

Приложение 9

Результаты визуального и инструментального обследования рабочего колеса, направляющего аппарата, подшипника, вала и маслоприемника гидротурбины.

Перечень контролируемых параметров по узлам

Состояние узлов по указанным параметрам

1. Рабочее колесо

- степень кавитационных разрушений лопастей и корпуса (место, площадь, глубина)

- наличие трещин на лопастях (место, характерный размер)

- состояние механизма разворота

- состояния уплотнений лопастей (визуально, по данным о протечках масла)

- состояние лабиринтных уплотнений для РО турбин

2. Направляющий аппарат

- состояние лопаток в зоне перехода пера к цапфам (визуально или специальными методами на наличие трещин)

- состояние верхнего и нижнего кольца направляющего аппарата (визуально)

- степень кавитационного износа выходных кромок лопаток

- состояние регулирующего кольца (наличие трещин визуально)

- на наличие трещин на рычагах серьгах, накладках (визуально, специальными методами)

- износ трущихся поверхностей кинематики (натиров, разрушений - визуально)

- состояние цпаф, подшипников и уплотнений цапф лопаток (визуально)

- состояние уплотнений лопаток

- состояние сервомоторов (поршней, цилиндров, штоков)

3. Подшипник турбины

- состояния вкладышей и трущихся поверхностей (визуальная оценка)

- состояние уплотнений

- наличие трещин на сухарях, по сварным швам, на корпусе (визуально или специальными методами)

- состояние опорных элементов (болтов, клиньев) - визуально

- состояние крепежных болтов (визуальная оценка)

4. Вал турбины

- наличие трещин в зоне фланцев, особенно в зоне отверстий под болты (контроль травлением)

- состояние шейки вала или облицовки в зоне подшипника (визуальный контроль)

- инструментальная оценка износа шейки или облицовки

5. Маслоприемник ПЛ гидротурбины

- наличие выбросов масла, оценка величины протечек (визуально)

- степень износа штанг, втулок, подшипников (визуально, инструментальный контроль)

Приложение 10

Результаты обследования системы регулирования гидротурбины

Перечень контролируемых параметров по узлам

Состояние узлов по указанным параметрам

- состояние электрического шкафа ЭГР: (наличие и причины сбоев, наличие запасных элементов, уровень изоляции).

- состояние гидромеханической колонки

регулятора (износ поверхностей трения игл, букс, золотников, состояние редукторов и маятника у гидромеханических регуляторов, надежность ЭГП)

- качество регулирования оборотов на холостом ходу и при сбросах нагрузки

- качество отработки задания на изменение мощности при ручном регулировании и при работе с системой ГРАМ

- соответствие комбинаторной зависимости ПЛ гидротурбин оптимальной, полученной по результатам натурных испытаний

- состояние котла МНУ (по результатам обследования на соответствие требованиям Госгортехнадзора)

- состояние насосов МНУ по производительности и износу оборудования

- состояние обратных клапанов, запорной арматуры (по данным эксплуатации)

- время цикла работы насосов на котел и на слив в летнее время

- достаточность запаса по перестановочным усилиям сервомоторов направляющего аппарата

Приложение 11

Результаты обследования статора гидрогенератора.

Перечень контролируемых параметров по узлам

Состояние узлов по указанным параметрам

- наличие усталостных трещин сварных швов, элементов крепления клиньев и стяжных шпилек корпуса, нашихтовочных клиньев, крепления к фундаменту (визуальный контроль)

- состояние активной стали: наличие контактной коррозии, ослабление прессовки (веер зубцов, выламывание, трещины листов), выпучивание пакетов, наличие местных перегревов, оплавлений (визуальный контроль)

- состояние нажимных пальцев, гребенок: наличие ослаблений крепления, деформаций, перекосов (визуальный контроль)

- ослабление крепления вентиляционных распорок (визуальный осмотр и простукивание)

- состояние стыков статора

- состояние креплений лобовых и пазовых частей стержней обмотки (визуальный контроль)

- состояние пазовых клиньев сердечника, состояние заклиновки (визуальный контроль и простукивание)

- состояние паяных соединений головок лобовых частей обмотки и перемычек (контроль неразрушающими методами)

- состояние изоляции: наличие натеков лака, обугливания поверхности стержней и бандажей, расслоение и трещины в изоляции (визуальный контроль)

- наличие неплотностей (течи) в системе водяного охлаждения стержней обмотки статора

- состояние фторопластовых шлангов, изоляционных крепежных элементов (визуальный контроль)

- состояние насосов, фильтров, регуляторов (по данным эксплуатации)

- оценка состояния системы водяного охлаждения на основании измерений сопротивления дистиллята, тепловых испытаний (по данным эксплуатации)

- состояние воздухоохладителей

Приложение 12

Результаты обследования ротора гидрогенератора

Перечень контролируемых параметров по узлам

Состояние узлов по указанным параметрам

- состояние стальных конструкций: наличие трещин сварных соединений остова, ослабление посадки обода на спицы, смещения, ослабление посадки и крепления полюсов на обод ротора, несовпадение средней линии полюсов и обода ротора на величину, превышающую допуск (визуальная оценка)

- форма ротора и статора, отклонения от норм (измерение воздушного зазора, осциллографирование Э.Д.С. витка)

- состояние межполюсных соединений: распайки, наличие трещин, перегревов (визуальный контроль)

- состояние демпферной системы: ослабление крепежных элементов, состояние пайки, наличие местных перегревов (визуальный контроль)

- состояние крепления токопровода (визуальный контроль)

- состояние лопаток вентиляторов воздушной системы охлаждения (визуальный контроль)

Приложение 13

Результаты обследования подпятника и подшипников гидрогенератора

Перечень контролируемых параметров по узлам

Состояние узлов по указанным параметрам

1. Подпятник

- состояние поверхностей трения ЭМП сегментов (визуальная оценка)

- наличие трещин тарельчатых опор (визуальный контроль, специальные методы)

- величина смятия опорных болтов, опорных тарелок (инструментальный контроль)

- наличие трещин в сварных соединениях стола подпятника (визуальный контроль)

- шероховатость зеркальной поверхности диска (визуальный контроль, слепками)

- величина макронеровности диска (измерения при прокрутке ротора) состояние маслоохладителей

2. Подшипник

- состояние трущихся поверхностей сегментов и втулки (визуальный контроль)

- состояние опорных частей: вкладыши, сухари, опорные болты (осмотр и обмеры)

- состояние сварных швов опорных элементов и корпуса (визуальный контроль, керосиновая проба на наличие трещин)

- состояние изоляции сегментов(визуальная оценка, измерения)

- состояние маслоохладителей

Приложение 14

Результаты обследования системы возбуждения гидрогенератора

Перечень контролируемых параметров по узлам

Состояние узлов по указанным параметрам

- состояние тиристоров и систем управления (по данным осмотров и испытаний)

- состояние системы водяного охлаждения тиристоров (насосов, трубопроводов, фильтров, теплообменников)

- состояние системы воздушного охлаждения (вентиляторов, креплений)

- оценка надежности, недостатки схемы и компоновки (по данным эксплуатации)

Приложение 15

Результаты обследования вспомогательного оборудования гидроагрегата

Перечень контролируемых параметров по узлам

Состояние узлов по указанным параметрам

1. Система технического водоснабжения

- состояние трубопроводов, запорной арматуры, насосов, эжекторов

- состояние системы смазки подшипников

- максимальная величина расхода воды в системе

- состояние средств автоматизации и регулирования расхода (наличие, достаточность, соответствие современным требованиям)

- недостатки схемы техводоснабжения, необходимость изменениями данным эксплуатации)

2. Система технического воздухоснабжения

- состояние компрессоров высокого и низкого давления, надежность резерва, недостатки компоновки (по данным эксплуатации)

- состояние воздухосборников и воздухопроводов (по заключению Котлонадзора)

- состояние запорной арматуры, приводов, средств автоматизации (визуальный контроль, данные эксплуатации)

- состояние системы перевода гидроагрегата в режим СК, надежность, недостатки компоновки, необходимость оптимизации (по данным эксплуатации и на основании результатов натурных испытаний)

3. Система осушения проточной части гидротурбины и откачки дренажа

- величина фильтрации через уплотнения затворов

- состояние откачивающих насосов (эжекторов) (достаточность резерва по данным эксплуатации)

- состояние сливных трубопроводов (визуальный контроль)

- состояние запорной арматуры и приводов (по данным эксплуатации)

- состояние насосов (эжекторов) откачки дренажа (достаточность резерва по данным эксплуатации)

- проявившиеся недостатки и необходимость изменения схемы осушения и дренажа (по данным эксплуатации)

4. Система пожаротушения гидроагрегата

- состояние датчиков, трубопроводов, запорной арматуры, приводов

- недостатки, выявленные за период эксплуатации

5. Система измерения гидравлических параметров турбины (уровня, напора, расхода и др.)

- состояние измерительной аппаратуры, тип, соответствие современным требованиям

- состояние системы, трубопроводов, датчиков (визуальный контроль)

- оценка достаточности и надежности (по данным эксплуатации)

Приложение 16

Состояние системы автоматического управления и защиты Гидроагрегата

Наименование показателя

Значение

1. Система автоматического управления

- краткое описание системы (тип управляющего ИВК на станционном уровне, на агрегатном уровне, наличие резервирования)

- состояние системы (соответствие современным требованиям)

- характерный режим функционирования (автоматический, информационная система)

- оценка надежности (по данным эксплуатации)

2. Система защиты гидроагрегата

- состав аппаратуры защиты (краткое описание)

- состояние системы, соответствие современным требованиям

- оценка надежности (по данным эксплуатации)

Приложение 17

Состояние средств эксплуатационного контроля параметров вибрации, биения вала, температуры

Наименование показателя

Значение

- состав средств контроля вибрации, биения вала, температуры (датчики, вторичная аппаратура, наличие выхода в АСУ)

- периодичность контроля

- места измерения параметров, количество точек измерения

- состояние средств контроля, соответствие современным требованиям

- оценка надежности и достаточности средств контроля в соответствии с действующими НТД

Приложение Г

(обязательное)

Контроль металла рабочих колес гидротурбин

Г.1 Общая часть

При эксплуатации гидротурбин металл рабочих колес подвержен воздействию навигационных, эрозионных, коррозионных, усталостных процессов, что с течением времени приводит к появлению различных дефектов в металле и повреждениям гидротурбин. При этом микроструктура металла не изменяется, однако его прочность снижается.

Методики, объемы и периодичность контрольно-диагностических операций, проводимых на рабочих колесах действующих ГЭС, не всегда обеспечивают выявления дефектов, что приводит к снижению надежности гидротурбин. Для контроля используют неоднотипное оборудование, применяют не всегда обоснованные методы диагностики, в результате чего снижается достоверность результатов диагностики металла. Недостатки диагностики в процессе эксплуатации приводили в ряде случаев к аварийным повреждениям рабочих колес гидротурбин.

Г.2 При эксплуатации гидротурбин следует проводить эксплуатационный контроль металла рабочих колес всех типов независимо от их мощности и конструкции в объемах и с периодичностью, указанной в приложении 1. При необходимости по решению технического руководителя ГЭС периодичность проведения контроля может быть сокращена, а объемы увеличены по сравнению с периодичностью и объемами, приведенными в приложении 1.

Г.2. Контроль металла следует проводить силами специалистов соответствующего профиля из состава эксплуатационного персонала, привлекаемых специализированных организаций, ремонтных организаций.

Г.3. На ГЭС должен быть организован контроль металла рабочих колес гидротурбин, налажен учет и расследование всех случаев выявления дефектов и возникновения повреждений металла в процессе эксплуатации. Сведения о повреждениях, выявленных при осмотре и ремонте, следует регистрировать в технической документации, которая должна храниться на ГЭС в течение всего периода эксплуатации контролируемого рабочего колеса.

Г.4. Если при проведении контроля по настоящему циркуляру будут обнаружены дефекты основного или наплавленного металла, включая сварные швы, следует производить повторный контроль в удвоенном объеме. Если при увеличенном повторном контроле снова будут обнаружены дефекты, необходимо производить 100 %-ный контроль.

Г.5. В случае затруднений в оценке надежности рабочего колеса из-за неоднократных повреждений металла вопрос о дальнейшей эксплуатации решать совместно со специализированными организациями и заводами-изготовителями.

Приложение 1

Эксплуатационный контроль металла рабочих колес гидротурбин

1. Периодичность контроля

1.1 Первый контроль металла рабочих колес гидротурбин следует выполнять не позднее чем через 8000 ч после начала эксплуатации. Если дефекты не будут обнаружены, последующие контрольные проверки следует выполнять не позднее чем через 25000 ч работы гидротурбины.

1.2 Если при первой проверке будут выявлены дефекты металла, то сроки проведения последующих контрольных проверок должны быть сокращены. Периодичность проведения контроля устанавливается техническим руководителем ГЭС по представлению специалистов из числа эксплуатационного персонала, при необходимости согласованном со специализированной организацией.

2 Объемы и методы контроля

2.1 Радиально-осевые гидротурбины

2.1.1 Лопасти рабочих колес (рис. 1) радиально-осевых гидротурбин подвергаются контролю для выявления кавитационных, эрозионных и коррозионно-усталостных повреждений и трещин в основном и направленном металле следующими методами и в объемах:

визуальный осмотр поверхности - 100 %;

магнитопорошковая дефектоскопия поверхностей рабочих колес гидротурбин диаметром не менее 4 м - выборочно на поверхностях, наиболее подверженных разрушениям1: лопастей из перлитных сталей - 10 %; лопастей из нержавеющих сталей - 5 %;

магнитопорошковая дефектоскопия сварных швов рабочих колес гидротурбин диаметром не менее 4 м - в объеме 10 %;

лабиринтные уплотнения (только в случае демонтажа рабочего колеса): визуальный осмотр - 100 %; магнитопорошковая дефектоскопия - 20 %**;

болты крепления лопастей рабочих колес гидротурбин: УЗК в объеме 100 %*.

____________

1 Допускается замена МПД травлением или цветной дефектоскопией.

- входной и выходной кромок лопастей - 100 %*;

- галтельных переходов - 100 %.*

* Независимо от марки стали.

** Допускается замена МПД травлением или цветной дефектоскопией.

2.1.2 Ультразвуковая дефектоскопия проводится по методикам заводов-изготовителей, магнитопорошковая и цветная дефектоскопии - в соответствии с приложением 2.

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 1. Схема лопасти рабочего колеса радиально-осевой гидротурбины с указанием основных мест контроля:

1 - верхний обод рабочего колеса; 2 - зона приварки лопасти к верхнему ободу рабочего колеса; 3 - входная кромка; 4 - нижний обод рабочего колеса; 5 - зона приварки лопасти к нижнему ободу рабочего колеса; 6 - выходная кромка.

2.2 Поворотно-лопастные гидротурбины

2.2.1 Лопасти рабочих колес (рис. 2) поворотно-лопастных гидротурбин подвергаются контролю для выявления кавитационных, эрозионных и коррозионно-усталостных повреждений и трещин в основном и наплавленном металле следующими методами и в объемах:

визуальный осмотр поверхности - 100 %;

магнитопорошковая дефектоскопия поверхностей колес гидротурбин диаметром не менее 4 м - выборочно на поверхностях, наиболее подверженных разрушениям**:

лопастей из перлитных сталей - 10 %;

лопастей из нержавеющих сталей - 5 %;

пера в зоне монтажного отверстия - 100 %*;

периферийной кромки лопастей - 100 %;

галтельных переходов - 100 %;

болты крепления лопастей рабочих колес гидротурбин подвергаются УЗК в объеме 100 %.

___________

* Независимо от марки стали.

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

* Допускается замена МПД травлением или цветной дефектоскопией.

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 2. Схема лопасти рабочего колеса поворотно-лопастной гидротурбины с указанием основных мест контроля.

1 - входная кромка; 2 - монтажное отверстие; 3 - выходная кромка; 4 - периферийная кромка; 5 - корневое сечение - место сопряжения фланца с пером; 6 - галтель - радиусный переход от фланца к перу

3. Техническая документация по результатам контроля

3.1. Для каждой гидротурбины следует вести учет выявленных при контроле дефектов по форме приложения 3 и формуляры с указанием мест расположения и размеров дефектов.

3.2. Техническая документация, утвержденная техническим руководителем ГЭС, должна быть сохранена как приложение к паспорту гидроагрегата в течение всего периода эксплуатации.

3.3. По результатам проведенного контроля следует определять объем ремонтно-восстановительных работ и разрабатывать техническую документацию на их выполнение в соответствии с «Инструкцией по организации ремонта энергетического оборудования электростанций, и подстанций» (М.: СЦНТИ ОРГЭС, 1975).

Приложение 2

Справочное

Перечень документов, определяющих методики контроля металла рабочих колес гидротурбин

1. ГОСТ 21105-75. Контроль неразрушающий. Магнитопорошковый метод.

2. Инструкция по применению портативных намагничивающих устройств для проведения магнитно-порошковой дефектоскопии деталей энергооборудования без зачистки поверхностей. - М.: СПО Союзтехэнерго, 1978.

3. ССТ 34.42.545-81. Соединения сварные оборудования АХ. Дефектоскопия Капиллярный цветной и люминесцентный методы.

Приложение 3

Наименование электростанции _________________________________

Станционный номер и тип гидроагрегата ________________________

СВЕДЕНИЯ О РЕЗУЛЬТАТАХ КОНТРОЛЯ

Элемент (деталь)

Номер чертежа

Завод-изготовитель (фирма.)

Заводской номер

Марка стали

Дата изготовления/дата ввода в эксплуатацию

Время наработки с начала эксплуатации, ч

Время наработки от предыдущего контроля, ч

Контроль поверхности

Размеры выборки после удаления дефектов, мм

Контроль за качеством сварки

Примечание

Дата, организация, номер заключения

Визуальный осмотр

Дефектоскопия

Длина

Ширина

Глубина

Дата, организация, номер заключения

Оценка качества сварки

Трудоемкость работ по контролю металла и устранению дефекта, длительность простоя, чел.-ч/ч

Описание дефекта

Метод

Описание дефекта

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19


Приложение Д

(справочное)

Методические указания по контролю линии валов вертикальных гидроагрегатов

Д.1. Введение

Д.1.1. В излагаемых ниже разделах инструкции приняты следующие условные обозначения:

Д.1.1.1. Точки (риски) обозначения разбивки окружности вала - I, II, III, ...; VIII (крупные валы - до XII).

Д.1.1.2. Диаметральные плоскости, в которых подсчитываются биения отдельных компонентов линии вала - I - V, II - VI, III - VII, IV - VIII (при разбивке окружности на 12 частей наименование плоскостей изменится: I - VII, II - VIII и т.д.).

Д.1.1.3. Показания приборов, регистрирующих биение по отдельным компонентам линии вала в каждой из точек по п. 1.4.1:

Iг - в зоне генераторного подшипника (верхнего);

Iд - по зеркальному диску подпятника;

Iф - по фланцу вала;

Iт - в зоне турбинного подшипника.

Д.1.1.4. Отклонения отдельных компонентов линии вала с учетом перемещения в генераторном подшипнике (в тех же точках):

Dф = Iф - Iг - фланца вала;

Dт = Iт - Iг - шейки вала в зоне турбинного подшипника.

Д.1.1.5. Полное биение (размах) тех же компонентов в четырех диаметральных плоскостях по п. 1.4.2:

торцовое dд = Iдп- Id(n + IV);

радиальное dф = Dфп- Dф(n + IV);

радиальное dт = Dтп- Dт (n + IV);

где n - от I до IV.

Д.1.1.6. Смещение бьющей точки от оси вращения

Д.1.1.7. Обозначение размеров:

l - расстояние между верхним генераторным подшипником и рассматриваемым сечением (lт и lф);

Д - диаметр расположения на зеркальном диске регистрирующего биение прибора;

Дд - диаметр зеркального диска;

Докрб - диаметр окружности регулировочных болтов сегментов.

Д.1.1.8. Излом К - отклонение нижнего конца последующего вала от осевой линии предыдущего.

Д.1.1.9. Зазор (на диаметр) в турбинном подшипнике - f.

Д.1.1.10. Уклон e, мм/м.

Д.2. Технические требования к технологической последовательности операций по проверке центровки и устранению ее дефектов

Д.2.1. Измерение зазоров по отдельным составным частям гидроагрегата: маслоприемнику, регуляторному генератору, возбудителю, генератору, всем направляющим подшипникам и рабочему колесу с занесением полученных данных в соответствующие карты измерения в графу «до ремонта».

Д.2.2. Проверка податливости грузонесущей крестовины путем фиксации разницы в перемещениях под нагрузкой каждой лапы в соответствии с картой измерения № 1.

Устранение неравномерно распределенной нагрузки на лапы путем перераспределения толщины прокладок под ними с перепроверкой податливости.

Д.2.3. Проверка общей линии валов методом поворота ротора агрегата на 360°. Инструктивные указания по проверке представлены в подразделе Ж.3.1.

Выявление необходимости устранения неперпендикулярности зеркального диска подпятника или излома валов во фланцах.

Д.2.4. Проверка по струне центровки неподвижных частей агрегата 2 и, при необходимости, приведение к соосности всех расточек. Инструктивные указания даны в подразделе Д.3.3.

Д.2.5. Устранение в ходе капитального ремонта неправильности формы рабочего колеса и его камеры, а также ротора генератора.

Д.2.6. Устранение неперпендикулярности зеркального диска подпятника и излома линии валов во фланцах с последующей перепроверкой общей линии валов.

Д.2.7. Проверка уклона валов (для агрегатов с подпятниками на жесткой опоре); устранение уклона. Инструктивные указания даны в подразделе Д.3.2.

Д.2.8. Центровка неподвижных частей агрегата (расточки под направляющие подшипники, статор генератора и пр.) по ротору. Заполнение карт измерений (графы «после ремонта») по узлам, указанным в п. Д.2.1.

Д.3. Технологическая инструкция по проверке центровки и устранению ее дефектов

Проверка центровки должна производиться в следующих случаях:

а) при проведении капитального ремонта впервые после монтажа;

б) при отсутствии данных по предыдущим проверкам;

в) при возникновении вибраций, связанных с повышенными биениями вала;

г) при замене или ремонте с разборкой каких-либо звеньев линии валов.

Д.3.1. Проверка общей линии валов методом поворота ротора на 360°

Д.3.1.1. Методы поворота роторов гидроагрегатов

В качестве основного способа поворота средних и крупных гидроагрегатов рекомендуется электрический поворот роторов, применяемый рядом гидроэлектростанций. Возможен также «крановый» способ с помощью троса, пропущенного через один или два блока и застроенного за специальные приливы на спицах ротора генератора; в процессе поворота трос последовательно перестрапливается. Указанный трос может быть навит на специальный сварной барабан, прикрепленный к верхнему торцу генераторного вала (рис. 1).

На рис. 2 показан простейший способ поворота ротора краном. Недостаток его в несимметричности прилагаемого усилия относительно центра ротора, приводящего к обязательному боковому смещению ротора в пределах зазора в направлявшем подшипнике. На рис. 3 представлен способ симметричного поворота, свободный от указанных недостатков и предпочтительный для поворота агрегатов с подпятниками на гидравлической опоре.

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 1. Схема поворота ротора агрегата:

1 - блок; 2 - приспособление для поворота ротора; 3 - гак мостового крана

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 2. Несимметричный способ поворота ротора гидроагрегата

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 3. Симметричный способ поворота ротора гидроагрегата

В качестве смазки сегментов подпятника и направляющего подшипника следует применять:

а) для легких роторов - свиное несоленое топленое сало, белую или серую ртутную мазь;

б) для тяжелых - бараний и говяжий жир, смесь свиного топленого сала с хорошо просеянным серебристым графитом, белую или серую ртутную мазь с графитом.

При температуре воздуха в машинном зале выше 20 °С целесообразно ввести в животный жир порошок дисульфида молибдена (М025).

Д.3.1.2. Подготовительные работы

Д.3.1.2.1. Разобрать все направляющие подшипники агрегата, за исключением одного, наиболее близко расположенного к подпятнику; в оставшемся подшипнике следует установить минимальные зазоры для уменьшения боковых перемещений ротора при его поворотах.

Д.3.1.2.2. Подготовить к применению следующее:

а) оборудование для электрического поворота или такелаж для поворота ротора краном;

б) смазку по п. Д.3.1.1 - 8 кг;

в) бесконтактные приборы дистанционного измерения биения на основе датчика Холла или индикаторы со штативами - по одному на каждое фланцевое соединение валов, шейку турбинного вала, зеркальный диск подпятника, а также на каждую шейку генераторного вала.

Д.3.1.2.3. Разметить окружность вала на восемь равных частей и нанести через каждые 45° риски мелом или белой масляной краской на втулку подпятника или непосредственно на ротор генератора так, чтобы они хорошо были видны крановщику, поворачивающему ротор.

Риски нумеруются от I до VIII против направления вращения ротора; при этом точка I ориентируется по какой-либо детали ротора (чаще всего по нумерованным полюсам). В этом случае угол поворота отсчитывается по числу полюсов ротора генератора, приходящихся на 1/8 часть окружности.

Д.3.1.2.4. Установить указанные в п. Д.3.1.2.2 приборы, регистрирующие биение отдельных компонентов ротора агрегата, согласно схеме карты измерения № 2. Прибор, регистрирующий торцовое биение зеркального диска, устанавливается между гофрами в одной вертикальной плоскости со всеми остальными приборами на расстоянии около 50 мм от наружного края диска.

Правила установки индикаторов следующие:

а) штатив индикаторов закрепляется надежно и не должен смещаться;

б) натяг ножки индикатора подбирается так, чтобы большая стрелка ориентировалась на «нуль», а малая находилась в середине шкалы; в этом случае индикатор будет иметь возможность отсчитывать показания на «плюс» и на «минус».

Д.3.1.2.5. Произвести пробный поворот ротора, уделяя особое внимание отсутствию его задеваний за неподвижные части агрегата, что выражается в плавном изменении показаний приборов. Операция заканчивается подведением точки I ротора к выбранному месту начала отсчета (контрольная метка на статоре генератора).

Д.3.1.3. Измерение и обработка полученных данных

Д.3.1.3.1. Произвести поворот ротора агрегата с остановами в каждой точке разметки по окружности, снятием показаний всех приборов, регистрирующих биение отдельных компонентов ротора, и записью результатов в карту измерения № 2. При каждом останове ротора обязательно следует ослабить натяжение тягового троса, чтобы не искажалось значение показаний индикаторов. Поворачивание ротора заканчивается при возвращении точки I в исходное положение.

Д.3.1.3.2. Выявление неперпендикулярности зеркального диска подпятников на гидравлической опоре имеет своеобразные особенности: часть биения диска проявляется, как и для жестких подпятников, в виде радиального биения генераторного вала во фланце; остальная часть сглаживается гидравлическими опорами, что регистрируется установленным к диску «торцовым» прибором (индикатором). Синтез указанных составляющих осуществляется в относительных величинах (мм/м).

Поэтому полное торцовое биение зеркального диска (по его внешнему диаметру) равно

при условии отсутствия волнистости рабочей поверхности диска.

Характерным для агрегатов с такими подпятниками следует признать несовпадение показаний приборов после поворота ротора на 360°, в частности, невозврат к нулю биения в точке 1. Указанное явление имеет место из-за перераспределения соотношения радиальных биений фланца вала и торцовых биений зеркального диска после первого протяжения краном.

Поэтому при подсчетах биений отдельных компонентов линии вала (по п. Д.3.1.3.3) следует оперировать данными по точке I в самом конце поворота, а не нулевыми в начале отсчета.

Д.3.1.3.3. Осуществить подсчет биений зеркального диска подпятника и шейки турбинного вала в четырех диаметральных плоскостях согласно зависимостям, приведенным в таблицах карты измерения № 2. Полное биение зеркального диска не должно превышать 0,12 мм*, биение шейки турбинного вала не должно превышать величины суммарного (на диаметр) зазора fв турбинном подшипнике. Пример подсчета биений представлен непосредственно в карте измерения.

Д.3.1.3.4. В случае наличия выходящей за пределы допустимого хотя бы одной из указанных величин построить график состояния линии валов в четырех диаметральных плоскостях (рис. 4).

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 4. Пример построения графика состояния линии вала

График строится в двух масштабах: длина вала l - вуменьшенной, смещение вала от оси вращения д/2в увеличенном.

У осевых линий вала сверху ставится наименование плоскости; положение цифр наименования плоскости относительно оси позволяет ориентировать на графике направление бьющей точки.

Продолжив геометрические линии вала генератора за фланцевые соединения (на графике - пунктиром), можно по масштабу снять расхождение «К» осевых линий валов на длине lт - lф турбинного вала.

Наибольшая величина Кмакс из всех плоскостей является расчетной для исправления излома в данном фланцевом соединении и указывает плоскость направления излома.

Конкретный пример проверки линии валов представлен непосредственно в карте измерения № 2.

Д.3.2. Проверка уклона валов

Проверка уклона валов производится непосредственно вслед за проверкой общей линии валов после устранения неперпендикулярности зеркального диска подпятника и излома валов во фланцах.

Настоящая Инструкция не рассматривает широко известную в монтажной практике проверку по четырем струнам из-за ее значительной трудоемкости и невозможности применения к зонтичным гидроагрегатам с опорой подпятника на крышку турбины.

Д.3.2.1. Проверка с помощью микрометрического уровня

Д.3.2.1.1. В случае проверки по нерабочей поверхности вала закрепить на генераторном валу (непосредственно над фланцевым соединением) три хомута с расстоянием 350 мм по высоте друг от друга. Указанное мероприятие осуществляется для усреднения показаний по соответствующим сечениям 1, 2, 3 (см. эскиз карты измерения № 3) и ослабления тем самым влияния дефектов профиля по высоте вала.

При проверке по хорошо обработанной поверхности (шейке вала) достаточен один хомут.

Д.3.2.1.2. Для фиксации мест установки угольника с уровнем нанести на вал в зоне обозначенных сечений 4 вертикальных линий, соответствующие направлениям осей: +х (правый берег); -х (левый берег); +у (ВБ); -у (НБ). Нанести также наименования указанных осей (рис. 5).

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 5. Разметка вала агрегата для проверки центровки уровнем «Геологоразведка»:

-х, +х, -у, +у - места закрепления угольника для установки уровня;

а - разметка; б - сечение вала в месте установки уровня;

1, 2, 3 - места установки хомутов

Последующие измерения уклона по каждой из этих осей (т.е. с двух сторон вала) предусмотрены в целях устранения влияния погрешности изготовления прямого угла угольника.

Д.3.2.1.3. Установить угольник (рис. 6) поочередно на каждый хомут в места его пересечения с обозначенными вертикальными линиями, притягивая его каждый раз к валу стяжным тросиком другим устройством (рис. 7).

В каждом из фиксируемых положений установить на горизонтальную полку угольника микрометрический уровень завода «Геологоразведка», очертить карандашом его положение и произвести измерение уклона.

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 6. Уголок для проверки линии валов с помощью уровня

Развернуть уровень на 180°, оставив его на очерченной площадке, и повторить измерение.

Таким образом, всего должно быть произведено 24 измерения (8 измерений - при проверке по шейке вала), результаты которых следует внести в таблицу карты измерения № 3.

Д.3.2.1.4. Произвести подсчет уклона согласно руководящим указаниям карты измерения.

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 7. Ротор генератора:

1 - хомут; 2 - стяжной тросик; 3 - уровень; 4 - угольник

Усреднение результата измерений 0 и 180° (среднее внутри осей) производится алгебраическим сложением показаний и делением сумм пополам. У среднего значения ставится знак большего по абсолютному значению показания.

Аналогичным образом рассчитывается усреднение показаний между положительными и отрицательными осями при получении oceй составляющих уклона ех и еу.

При проверке по нерабочим поверхностям производится усреднение сечениям 1, 2, 3.

Подсчет завершается переводом результирующей величины уклона делений шкалы в миллиметры на метр (одно деление - 0,1 мм/м).

Д.3.2.1.5. Пример расчета уклона валов с помощью микрометрического уровня представлен непосредственно в карте измерения.

Д.3.2.2. Проверка с помощью маятникового электроизмерителя (МЭИ)

Д.3.2.2.1. Выполнить требования п. 3.2.1.1.

Д.3.2.2.2. Установить МЭИ последовательно на каждый хомут перемещая его по окружности в прижатом к валу состоянии, найти и зафиксировать плоскость наибольшего отклонения стрелки индикатора (одно деление шкалы - 0,01 мм/м) с проставлением знака направления уклона.

Проверить правильность полученного измерения повторным замером другой стороны вала (под углом 180°). В этом случае величина уклона должна сохраниться прежней, а направление уклона измениться на противоположное.

Усреднить результаты измерения по трем сечениям.

Проверка уклона валов с помощью МЭИ отличается большой точностью измерений и меньшей трудоемкостью за счет исключения операций по многочисленным перестановкам и креплению к валу угольника при двухразовых измерениях в каждом его положении.

Д.3.3. Центровка неподвижных частей гидроагрегата

Д.3.3.1. При ремонте без выемки ротора агрегата

Д.3.3.1.1. Произвести измерение радиальных зазоров между:

1) ротором и статором генератора;

2) якорем и магнитной системой возбудителя;

3) ротором и статором регуляторного генератора;

4) штангами и втулками маслоприемника;

5) корпусами подшипников гидроагрегата и валом;

6) выгородкой масляной ванны подпятника и валом;

7) подвижными и неподвижными гребенками лабиринтных уплотнений вала турбины;

8) между камерой рабочего колеса и его лопастями или между ободами и неподвижными лабиринтными кольцами.

Д.3.3.1.2. В случае проведения наплавочных работ по рабочему колесу и его камере, при замене лопастей, а также отсутствии данных по предыдущим измерениям повторить измерения по п. Д.3.1.1 «а» и «з» при повороте ротора агрегата на 360° с остановами через каждый полюс генератора для проверки формы ротора и статора генератора, а также рабочего колеса и камеры или ободов и неподвижных лабиринтных колец. Устранить дефекты формы.

Д.3.3.1.3. Определить сравнением диаметрально противоположных зазоров величину и направление смещения неподвижных частей гидроагрегата относительно вращающихся. Величина смещения равна половине разности максимальных и минимальных зазоров; направление в сторону минимальных зазоров.

Д.3.3.2. При ремонте с выемкой ротора агрегата

Д.3.3.2.1. Подвесить внутри неподвижных частей агрегата отвес стальную струну с грузом, опущенным в ведро с вязким маслом, и отцентрировать ее по оси камеры или неподвижного лабиринтного конца с точностью 0,2 - 0,5 мм.

Д.3.3.2.2. Измерить штихмассом расстояния внутренних поверхностей (неподвижных частей) от струны в четырех направлениях: -х, +х, -у, +у, совпадающих с осями агрегата. Результаты измерений внести в карту измерений № 4.

Д.3.3.2.3. Произвести совмещение осей неподвижных частей с общей осью агрегата согласно рекомендациям п. Д.3.1.3.

Д.3.4. Устранение дефектов центровки.

Д.3.4.1. Устранение неперпендикулярности зеркального диска подпятника

Дефект устранить посредством шабрения опорной поверхности втулки подпятника или тыльной стороны диска, при этом максимальная толщина сшабриваемого клинового слоя h должна находиться со стороны положительного биения диска:

В качестве временной меры (до следующего капитального ремонта) допускается сшабривание клинового слоя со свободной поверхности изоляционной прокладки, приклеиваемой к тыльной стороне зеркального диска с помощью эпоксидной смолы. При следующем капитальном ремонте необходимо шабрить втулку (или диск) и заменять прокладку.

Установка между втулкой и диском клиновой ступенчатой прокладки из отдельных листов фольги или бумаги запрещается.

Д.3.4.2. Устранение излома линии валов во фланцах

Дефект устранить посредством шабрения торца одного из фланцев (как правило, нижнего); при этом максимальная высота сшабриваемого клинового слоя h, должна располагаться со стороны отрицательного отклонения шейки турбинного вала:

Установка между фланцами клиновой ступенчатой прокладки также запрещается.

Д.3.4.3. Устранение уклона линии валов

Дефект устранить посредством регулировки высоты отдельных сегментов подпятника согласно схеме рис. 8.

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 8. Схема регулировки высоты элементов подпятника для устранения уклона линии валов

На проекции сегментов, перпендикулярной вектору уклона, строится треугольник высот подъема сегментов (h1, h2, h3 ... и т.д.) с максимальной высотой hмакс = е*Докрб, расположенной прямо противоположно вектору уклона (в данном случае, максимальный подъем сегмента № 2). Операция заканчивается регулировкой равномерности нагрузки на сегменты подпятника

Отклонение шейки вала к осей турбинного подшипника Dт = Iч - Iг

0

+0,19

+0,20

+0,17

0,00

-0,225

-0,168

-0,138

+0,04

Отклонения фланцевого соединения Dф = Iф - Iг

0

-0,22

-0,268

-0,06

-0,04

+0,169

-0,212

-0,026

-0,11

* Измерение биения зеркального диска производится лишь для агрегатов с подпятниками гидравлической опоре.

Диаметральные плоскости

Биение S, мм

фланца вала dф

турбинного подшипника dт

торцевое вертикального диска для агрегата с подпятником на жесткой опоре

Для агрегата с подпятником на гидравлической опоре

Торцовое зеркального диска

dд

Полное торцевое

I - V

-0,07

+0,04

-

-0,04

-0,057

II - VI

-0,350

+0,115

-

-0,09

-0,18

III - VII

-0,512

+0,368

-

-0,08

-0,20

IV - VIII

-0,22

-0,932

-

-0,01

-0,08

Подсчет dп произведен при lф = 8,8 м; Д = 3,9 м; Дд = 4,0 м; f = 0,2 мм для агрегата с подпятником на гидравлической опоре.

Вывод: следует устранить неперпендикулярность зеркального диска в плоскости III - VII и излом валов во фланцах в пп. II - VI.

Приложение

КАРТЫ ИЗМЕРЕНИЙ

Карта № 1

Определение податливости крестовины

№ - лучей крестовины

1

2

3

4

5

6

7

8

до ремонта

Показания индикаторов в ненагруженном состоянии

I1

I2

Показания индикаторов в нагруженном состоянии

I1

I2

Податливость опор в точках

1

2

после ремонта

Показания индикаторов в ненагруженном состоянии

I1

I2

Показания индикаторов в нагруженном состоянии

I1

I2

Податливость опор в точках

1

2

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Карта № 2

Проверка общей линии валов методом поворота ротора агрегата на 360°

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Обозначение приборов и отклонений вала

Показания приборов, регистрирующих биение и подсчет отклонений в точках по окружности

I

II

III

IV

V

VI

VII

VIII

IX

Iг

0

+0,02

+0,015

+0,010

+0,010

-0,005

+0,012

+0,028

+0,03

Iд*

0

-0,08

-0,05

0,00

+0,02

-0,01

+0,03

+0,01

-0,02

Iф

0

-0,20

-0,19

-0,05

-0,03

+0,15

+0,30

0,00

-0,08

Iт

0

+0,21

+0,35

-0,18

+0,01

-0,26

-0,18

-0,11

+0,07

Карта № 3

Проверка уклона линии валов с помощью микрометрического уровня завода «Геологоразведка»

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Сечения замеров

Места замеров по окружности вала

Положение уровня на плоскости угольника (градусов)

0

180

0

180

0

180

0

180

1

Показания с исправлением ухода пузырька

Среднее внутриосевое

e; e

2

Число делений с направлением ухода пузырька

e; e

3

Деления

Среднее

e; e

Уклоны eх и eу

В дел. eх »

eу »

eх = -0,76 мм/м eу = +0,74 мм/м

Абсолютная величина уклона генераторного вала:

Примечания: 1. Показания записываются в делениях прибора (цена деления 0,1 мм/м) с проставлением над цифрой стрелки, указывающей направление ухода пузырька (направление уклона вала). Знак «+» перед цифрой ставится при ориентации этой стрелки по положительной оси и «-» в противном случае. Окончательные результаты составляющих уклонов переводятся в миллиметры на метр. 2. Направление уклона проставляется на принятой системе координат путем построения векторной суммы составлявших eх и eу. 3. Данный метод проверки уклона следует принять только после устранения неперпендикулярности зеркала пяты.

Картa № 4

Проверка центровки неподвижных частей насосного агрегата по струне

№ сечения (по эскизу)

Места измерений

Зазоры по осям

До ремонта

Дата ________

После ремонта

Дата __________

-X

-X

1

Закладное кольцо всасывающей трубы

2

Нижний поясок нижнего подшипника

3

Верхний поясок нижнего подшипника

4

Нижний поясок верхнего подшипника

5

Верхний поясок верхнего подшипника

6

Нижний подшипник электродвигателя

7

Низ расточки статора электродвигателя

8

Верх расточки статора электродвигателя

9

Верхний подшипник электродвигателя

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Приложение Е

(обязательное)

Методики проверки геометрической формы и размеров проточной части гидротурбин

Е.1 Общая часть

Опыт монтажа и эксплуатации оборудования ГЭС подтверждает отсутствие в процессе изготовления, монтажа и ввода в эксплуатацию должного контроля за соответствием действительных размеров и технологического состояния проточной части турбин проектным.

К числу таких отклонений относятся:

а) различие углов установки лопастей рабочего колеса поворотнолопастных гидротурбин;

б) несоответствие диаметров рабочего колеса турбины и камеры рабочего колеса;

в) различие проходных сечений между лопастями рабочего колеса;

г) несоответствие профиля лопастей рабочего колеса расчетному;

д) несоответствие профиля элементов проточной части турбины расчетному (например, зуба спирали или колена отсасывающей трубы);

е) недостаточная чистота обработки поверхностей проточной части (в стыках, неровности металла и бетона и др.).

Эти и подобные им дефекты проточной части гидротурбин вызывают нежелательные динамические процессы, являющиеся причиной неполадок в работе гидроагрегатов. Так, например, гидравлический небаланс рабочего колеса турбины, вызванный неравномерностью его решетки, отрицательно сказывается на работе турбины. Нарушенный всего на 0,5° угол установки лопастей рабочего колеса поворотно-лопастной гидротурбины уже существенно изменяет соотношение сил, действующих на лопасти, по сравнению с расчетной схемой.

Разное качество исполнения входных кромок лопастей рабочего колеса одной и той же гидротурбины вызывает неравномерность напряжений в идентичных точках лопастей.

Несоответствие диаметров рабочего колеса гидротурбины и его камеры приводит к необходимости обрубать лопасти на стадии монтажа, что существенно изменяет расчетный зазор между лопастями и облицовкой камеры и ведет к увеличению объемных потерь и снижению к.п.д.

Некоторые из названных и подобных отклонений элементов проточной части гидротурбин от проектных значений остаются не устраненными и могут неблагоприятно влиять на работу гидротурбины, некоторые отклонения могут быть устранены в процессе монтажа оборудования. После ввода оборудования в эксплуатацию также могут быть обнаружены скрытые дефекты.

В связи с этим эксплуатационный персонал ГЭС должен проверять соответствие форм и размеров элементов проточной части гидротурбины проектно-конструкторской документации и монтажным формулярам.

Настоящее Приложение регламентирует контрольные промеры, производимые персоналом ГЭС с участием монтажной (ремонтной) организации и с привлечением завода-изготовителя и/или специализированных организаций.

Рекомендуемые измерения следует выполнять при приемке оборудования в монтаж, в процессе монтажа по мере готовности проточной части гидротурбины и подготовки к монтажу рабочего колеса, перед приемкой гидроагрегата в эксплуатацию, а также при необходимости, вызванной неполадками в работе оборудования, в период эксплуатации

Е.2 Выбор элементов, подлежащих измерениям

Выбор элементов, подлежащих измерению, основан на ограничении проверкой небольшого числа параметров, характерных для данного узла.

При обнаружении несоответствия проекту или формуляру характерного параметра, например шага t лопастей (характеризующего наклон, угол установки и расстояние в свету), измерения производятся более подробно для определения причины несоответствия. При этом мерное сечение выбирается в плоскости, удобной для измерений.

Е.2.1. Турбинная камера

Наиболее распространенной формой подводящей турбинной камеры является спиральная камера таврового или круглого сечения.

В зависимости от напора спиральные камеры выполняются бетонными или металлическими. Внутри спирали расположен статор, являющийся несущей конструкцией турбины. Статор охватывает направляющий аппарат. Согласованность (совпадение) направления скоростей воды в спиральной камере с направлением входных элементов статорных колонн и направляющих лопаток обеспечивает минимальную величину потерь энергии в проточном тракте. Причем потери энергии в направляющем аппарате при отсутствии указанной согласованности составляют основную часть суммы потерь в системе «спираль - статор - направляющий аппарат». Кроме того, возмущения потока, а также неравномерность распределения скоростей по периметру направляющего аппарата оказывают влияние на работу гидроагрегата в целом, вызывая неравномерность сил, действующих на рабочее колесо турбины.

Поэтому в основе контрольных замеров в турбинной камере лежит проверка взаимно правильного расположения колонн статора и лопаток направляющего аппарата, а также равномерности направляющего аппарата, т.е. относительной разницы расстояний между его лопатками.

Измерения производятся после окончательной готовности турбинной камеры. В основу контрольных измерений положены технические условия на монтаж гидроагрегатов.

Основными элементами контроля являются; подводящая воду часть камеры, статор и направляющий аппарат турбины. При этом уделяется внимание положению зуба спирали.

Технические условия на монтаж гидроагрегатов определяют объем измерений и допуски на установку статоров гидротурбин. Причем для статоров с неотъемными колоннами (будь то неразъемная конструкция или состоящая из отдельных сегментов) предусматриваются специальные измерения, фиксирующие положение статора в целом относительно осей X и Y. Для статоров же с отъемными колоннами производятся измерения, фиксирующие положение каждой колонны относительно специальной расчетной окружности, а также относительно радиуса.

Небольшие цельнолитые статоры обычно имеют правильную форму и точные размеры, поэтому тщательным измерениям при монтаже не подвергаются.

Однако предусматривается объем контрольных измерений, фиксирующий с достаточной точностью отклонения по основным влияющим на работу гидроагрегата параметрам.

При этом учитывается, что определяющими параметрами являются:

а) в турбинной камере - входное сечение и радиусы спирали;

б) в статоре - положение колонн в плане и их общее положение по отношению к осям Х иY;

в) в направляющем аппарате - расстояние между лопатками и высота, а также привязка лопаток к осям X и Y.

Е.2.1.1 Спиральная камера таврового сечения.

Измерению подлежат:

1. Входное сечение турбинного водовода - ширина А в сечении пазов решетки. Если имеется разделительный бычок, то измеряются размеры a1 и а2 и размер DY и привязка носка бычка к оси X - DY.

2. Сечение спирали: радиальный размер l (расстояние от внешней окружности установки колонн статора до стенки спирали) и в последующих сечениях - размеры 2, 3, 4 соответственно по осям X, XY, Y, YX, вертикальный размер l? (расстояние от потолка до днища спирали) и в последующих сечениях - размеры 2?, 3?, 4? по тем же осям.

Измерения вертикальных и горизонтальных размеров спирали производятся с допуском на величину отклонения от геометрической формы в отсасывающих трубах, предусмотренным техническими условиями на монтаже гидроагрегатов. При диаметре рабочего колеса от 2000 мм и выше допустимое значение отклонений для размеров А,а, б, Y, 1 - 4, 1? - 4? составляет 0,005 проектного размера.

3. Расстояние t1 между входными кромками колонн статора по корде (без измерения расстояния между зубом спирали и прилегающим к нему колоннами статора); расстояние t2 между выходными кромками колонн статора по хорде (начиная от зуба спирали); привязка зуба спирали к оси X - DY3.

4. Расстояние t1 между входными кромками лопаток направляющего аппарата по хорде (приложение 2); расстояние t2 между выходными кромками лопаток направляющего аппарата по хорде; привязка низшего кольца направляющего аппарата к осям Y и X; высота направляющего аппарата b0 (см. приложение 1).

Правильность округления оголовка промежуточного бычка определяется шаблоном, изготовленным по размерам на чертежах проектной документации.

Измерения по пунктам 3 и 4 производятся в любой выбранной горизонтальной плоскости 1-1 при полном открытии направляющего аппарата.

В таблице Е.1 приведены допуски на установку статоров, предусмотренные техническими условиями на монтаж гидроагрегатов. Эти же допуски являются определяющими и при контрольных измерениях.

Таблица Е.1 Допуски на установку статоров гидротурбин

Характер отклонения

Отклонение (мм) для диаметра рабочего колеса, м

До 2,0

От 2,0 до 3,5

От 3,5 до 5,5

От 5,5 до 7,5

От 7,5 до 9,5

От 9,5 до 10,5

Смещение осевых меток на деталях относительно осей гидроагрегата X и Y (DX, DY)

2,0

2,0

2,0

3,0

5,0

5,0

Шаг на установочной окружности (по хорде) между колоннами

8,0

8,0

10,0

12,0

15,0

15,0

Нецилиндричность (расстояние от центральной оси до внутренней расточки детали в местах, заданных формуляром

0,5

0,8

1,0

1,2

1,5

2,0

Е.2.1.2 Спиральная камера круглого сечения (приложение 3)

Измерению подлежат:

1. В сварных спиралях - сечение спирали: радиальный размер 1 (расстояние от внешней окружности статора до стенки спирали) и в последующих сечениях - размеры 2, 3 и т.д. соответственно по осям X, XY, Y, YX в плоскости оси направляющего аппарата; вертикальный размер 1? и в последующих сечениях - размеры 2?, 3? и т.д.

2. Статор и направляющий аппарат - измерения производятся так же, как в спиралях таврового сечения.

3. Привязка зуба спирали к оси X - DY3.

При этих измерениях необходимо руководствоваться следующими допусками:

- нарушение формы сечения сварной спиральной камеры не должно превышать 0,005 размера в данном сечении;

- смещение центральной оси входного сечения спиральной камеры от оси Y не должно превышать 12, 18, 25, 30 и 40 мм при диаметре входного сечения спиральной камеры соответственно 2,0; 3,0; 4,5; 6,0 и 8,0 м.

4. В литых спиралях - расстояние t2 между выходными кромками колонн статора по хорде.

Е.2.2. Рабочее колесо гидротурбины

Рабочее колесо гидротурбины - вращающийся элемент проточной части. Несоответствие его размеров, формы и состояния поверхностей влияет не только на энергетические свойства, но и на механическое состояние гидроагрегата в целом.

В Приложении рассматриваются основные типы рабочих колес: радиально-осевые разной быстроходности и поворотно-лопастные. В принцип контроля этого элемента положены определение равномерности решетки рабочего колеса, соответствие окружности ободов и лопастей, концентричность ободов, правильность профилей лопастей и угла их установки.

Контрольные измерения производятся на монтажной площадке ГЭС перед установкой рабочего колеса в кратер турбины. Профиль лопастей принимается заказчиком по заводским формулярам.

Е.2.2.1. Рабочее колесо радиально-осевого типа (приложение 4)

Измерению подлежат:

1. Ширина t1 прохода между лопастями на входе в любом сечении I-I (расстояние между входными кромками) по хорде.

2. Ширина t2 прохода между лопастями на выходе в любом сечении II-II на расстоянии а от нижнего обода (расстояние между выходными кромками) по хорде.

3. Высота входного сечения h в четырех точках, по осям X и Y.

Часть лопасти между определенными входным и выходным сечениями должна быть непрерывной, плавной кривой. После сборки и центровки гидроагрегата проверяются зазоры в лабиринтах между вращающимися и неподвижными частями в четырех точках по диаметру.

Отклонение зазоров в лабиринтных уплотнениях рабочего колеса радиально-осевых турбин после центровки гидроагрегата не должно превышать 20 % проектного зазора.

Е.2.2.2. Рабочее колесо осевого (поворотно-лопастного, пропеллерного) типа (приложение 5)

Измерению подлежат:

1. Ширина t1 прохода между лопастями на входе в любом кольцевом сечении I-I между точками а по хорде.

2. Ширина t2 прохода между лопастями на выходе в кольцевом сечении между точками б по хорде.

3. Радиальное расстояние DR крайней точки лопасти b, лежащей в горизонтальной плоскости, проходящей через ось поворота лопастей.

Примечание. Измерения по пунктам 1 и 2 производятся при максимальном и минимальном углах разворота лопастей.

Измерения на рабочих колесах турбин, предлагаемые данной Методикой, основаны на допусках, указанных заводом-изготовителем и согласованных с заказчиком.

Е.2.3. Камера рабочего колеса турбины

Форма камеры оказывает большое влияние не только на энергетические и кавитационные качества рабочего колеса турбины. Подчас из-за несоответствия диаметров камеры и рабочего колеса лопастного типа при монтаже производится обрезка кромок его лопастей по месту, что нарушает балансировку рабочего колеса и расчетный зазор между лопастью и камерой. Поэтому предварительным контрольным измерениям в камере перед опусканием колеса в кратер следует уделять особое внимание.

У радиально-осевых гидротурбин форма и концентричность наружных лабиринтных уплотнений сказываются также не только на энергетических показателях работы турбины, но и на ее механических характеристиках, таких, как вибрация (например, от задевания вращающихся частей о неподвижные) или подшипниковое действие высоких щелевых уплотнений.

В основу поверочных контрольных замеров камеры рабочего колеса поворотнолопастных турбин и закладных частей радиально-осевых турбин положены измерения диаметральных размеров, характеризующих соответствие данного сечения правильной окружности. Контрольные измерения в камере рабочего колеса поворотнолопастной турбины производятся до и после бетонирования в соответствии с техническими условиями на монтаж гидроагрегатов.

При контрольных измерениях лабиринтных уплотнений радиально-осевых турбин измерению подлежат (приложение 6):

1. Радиальные размеры DR между струнами мерительного инструмента и верхним и нижним уплотнительными кольцами с помощью штихмаса с вилкой.

При соответствии формы уплотнительных колец правильной окружности и при концентричности этих колец разность радиальных замеров DR? - DR? для диаметрально противоположных струн одинакова. При измерениях мерительное устройство не обязательно совмещать с каким-то центром.

Неконцентричность уплотнительных колец верхнего и нижнего ободов рабочего колеса относительно вала допускается в пределах до 0,1 величины одностороннего зазора в лабиринтных уплотнениях.

2. Щелевые размеры а и б по осям +Х, +Y, -X, -Y.

Е.2.4. Отсасывающая труба (приложение 7)

Отсасывающая труба - концевой элемент проточной части реактивной гидротурбины. Ее форма и геометрические размеры выбираются на основании оптимальных данных испытаний расчетных моделей. От точного соблюдения геометрических размеров, от плавности переходов одних элементов трубы в другие зависят как энергетические, так и механические свойства турбин. Однако на практике не всегда соблюдается строгое выполнение отсасывающих труб.

В основе контроля отсасывающей трубы лежат измерения размеров, определяющих геометрическую форму и основные сечения трубы.

Контрольные измерения проводятся после бетонирования закладных частей отсасывающей трубы.

Измерению подлежат:

1. Размеры а, б, в, г, д, l, h, определяющие геометрическую форму трубы.

В отсасывающих трубах с промежуточными бычками измеряются также размеры геометрического положения бычков относительно стенок и проверяются радиусы округления этих бычков шаблоном, изготовленным по чертежам,

2. Радиальные размеры R1 и R2,определяющие нецилиндричность по осям X, XY, Y и YX, a также радиусы колена отсасывающей трубы при переходе в горизонтальную часть.

Эти измерения проводятся совместно с монтажной организацией. При контрольных измерениях в отсасывающей трубе следует руководствоваться допусками (таблица Е.2).

Таблица Е.2 Допуски на монтаж отсасывающей трубы

Характер отклонения

Отклонение (мм) для диаметра рабочего колеса, м

До 2,0

От 2,0 до 3,0

От 3,0 до 5,0

От 5,0 до 7,5

От 7,5 до 9,5

От 9,5 до 10,5

Отклонение высотных размеров

8

10

15

20

25

25

Нецилиндричность

5

6

10

15

20

25

Отклонение от геометрической формы (размеры а, б, в, г, д, l)

Не более 0,1 проектного размера

Примечание. Допустимые неровности в бетоне должны быть не более 0,5 % D1.

Е.3. Способы измерения

Больше диаметры и длина замеряются в гидротурбостроении различными измерительными средствами (приложение 8). При этом широкое распространение имеют прямой метод измерения, при котором предусматривается непосредственное определение искомой величины, и косвенный метод, позволяющий определить эту величину по результатам измерения другой величины, связанной с искомой определенной зависимостью.

И тот и другой методы используются как заводами-изготовителями гидротурбин, так и специализированными монтажными организациями или могут быть использованы представителями заказчика - дирекции эксплуатации ГЭС.

Естественно, что измерения, производимые в заводских условиях, отличаются большей точностью и выполняются более совершенным инструментом, разработанным на заводе применительно к требуемой технологии.

Так, для измерения внутренних размеров применяются, как правило, регулируемые штихмасы с микрометрической головкой. Диаметры до 5000 мм обмеряются непосредственно, а свыше 5000 мм - косвенным методом.

Для измерения наружных размеров (диаметры до 6000 мм) применяются диаметральные или линейные сигарообразные скобы с микрометрами или индикаторами. Размеры свыше 6000 мм измеряются косвенными методами рулетками или от переходных баз. Методы измерений от переходных баз различны в зависимости от конфигурации деталей, их габаритов и требуемой точности.

Распространенным косвенным методом измерения наружных диаметров в гидротурбостроении является метод опоясывания рулеткой. Недостаток этого метода заключается в том, что он не позволяет выявить овальности сечения.

Монтажные организации ведут измерения принципиально теми же методами.

Наиболее распространенные из них (рис. 1):

а) прямой метод измерения от струны, совмещенной с осью гидроагрегата, с помощью штихмаса или калиброванной рулетки;

б) косвенный метод измерения от поворотного приспособления, базирующегося на стойке, совмещенной с базовой струной с помощью штихмаса или индикатора.

Для проверки концентричности например бандажных и уплотнительных колец радиально-осевого рабочего колеса, используется специальное приспособление (рис. 2).

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 1. Проверка размеров камеры рабочего колеса с помощью струны

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 2. Приспособление для проверки концентричности

Приложение 1

_____________ ГЭС

Гидроагрегат ст. № ____

спиральная камера таврового сечения

Формуляр № 1

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Обозначения

Размер пo чертежу

Фактический размер

Фактическое отклонение

Допустимое отклонение

А

a

б

DY

DY3

1/1?

2/2?

3/3?

4/4?

Обозначения

Размеры между колонками, номер

1-2

2-3

3-4

4-5

5-6

6-7

7-8

8-9

9-10

10-1

Допустимое отклонение

t1

по чертежу

фактическое

Dt1

фактическое отклонение

t2

по чертежу

фактическое

Dt2

фактическое отклонение

Замеры проводил

Дата

Приложение 2

_____________ ГЭС

Гидроагрегат ст. № ____

Направляющий аппарат

Формуляр № 2

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Обозначения

Размер по чертежу

Фактический размер

Фактическое отклонение

Допустимое отклонение

b0

DX

DY

Обозначения

Размеры между лопатками направляющего аппарата, номер

1-2

2-3

3-4

4-5

5-6

6-7

...

20-21

21-22

22-23

23-24

24-1

Допустимое отклонение

t1

по чертежу

фактическое

Dt1

фактическое отклонение

t2

по чертежу

фактическое

Dt2

фактическое отклонение

Замеры проводил

Дата

Приложение 3

_____________ ГЭС

Гидроагрегат ст. № ____

спиральная камера круглого сечения

Формуляр № 3

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Обозначения

Размер по чертежу

Фактический размер

Фактическое отклонение

Допустимое отклонение

1/1?

2/2?

3/3?

4/4?

5/5?

6/6?

7/7?

DJ3

R

Обозначения

Размеры между колонками, номер

1-2

2-3

3-4

4-5

5-6

6-7

7-8

8-9

9-10

10-1

Допустимое отклонение

t1

по чертежу

фактическое

Dt1

фактическое отклонение

t2

по чертежу

фактическое

Dt2

фактическое отклонение

Замеры проводил

Дата

Приложение 4

_____________ ГЭС

Гидроагрегат ст. № ____

рабочее колесо радиально-осевого типа

Формуляр № 4

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Обозначения

Размеры между лопастями, номер

1-2

2-3

3-4

4-5

5-6

6-7

7-8

...

Допустимое отклонение

t1

по чертежу

фактическое

Dt1

фактическое отклонение

t2

по чертежу

фактическое

Dt2

фактическое отклонение

Обозначение

Размер по чертежу

Фактические размеры по осям

Фактическое максимальное отклонение

Допустимое отклонение

+Y

-Y

h

Замеры проводил

Дата

Приложение 5

_____________ ГЭС

Гидроагрегат ст. № ____

рабочее колесо поворотно-лопастного типа

Формуляр № 5

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Обозначение

Размер по чертежу

Фактический размер

Фактическое отклонение

Допустимое отклонение

DR

Обозначения

Размеры между лопастями, номер

1-2

2-3

3-4

4-1

...

Допустимое отклонение

t1

по чертежу

фактическое

Dt1

фактическое отклонение

t2

по чертежу

фактическое

Dt2

фактическое отклонение

Замеры проводил

Дата

Приложение 6

_____________ ГЭС

Гидроагрегат ст. № ____

лабиринтные уплотнения радиально-осевых турбин

Формуляр № 7

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Обозначения

Размер по чертежу

Фактические размеры по осям

Фактическое максимальное отклонение

Допустимое отклонение

+Y

+Y+X

+X

+X-Y

-Y

-Y-X

-X

-X+Y

DR?

DR?

a

б

Замеры проводил

Дата

Приложение 7

_____________ ГЭС

Гидроагрегат ст. № ____

отсасывающая труба

Формуляр № 8

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Обозначение

Размер по чертежу

Фактический размер

Фактическое отклонение

Допустимое отклонение

а

б

в

г

д

l

h

Обозначения

Размер по чертежу

Фактические размеры по осям

Фактическое отклонение

Допустимое отклонение

+Y

+Y+X

+X

+X-Y

-Y

-Y-X

-X

-X+Y

R1

R2

Замеры проводил

Дата

Приложение 8

Методика предусматривает использование при контрольных измерениях следующих средств измерения:

Объект измерения

Турбинная камера и отсасывающая груба (большие линейные размеры)

Средство измерения

Рулетка

Статор, направляющий аппарат (малые линейные размеры)

Рулетка, линейка

Камера рабочего колеса и закладные части радиально-осевых турбин (диаметральные размеры)

Штихмас, поворотное приспособление, щуп

Рабочее колесо поворотно-лопастных турбин (диаметральные размеры, малые линейные размеры)

Рулетка, линейка, поворотное приспособление

Рабочее колесо радиально-осевых турбин (диаметральные размеры, малые линейные размеры)

Штихмас, рулетка, линейка, поворотное приспособление

Приложение Ж

(обязательное)

Методические указания по испытаниям системы регулирования гидротурбин

Ж.1. Введение

В современных мощных энергосистемах гидроагрегаты работают, как правило, или в остропиковых режимах, когда важно минимальное время работы на холостом ходу, или в составе системы группового регулирования активной мощности регулируют перетоки мощности по линиям электропередач. Нередки случаи выделения гидроэлектростанций на работу в изолированном энергорайоне с ответственным потребителем, когда гидроагрегаты регулируются индивидуальными регуляторами частоты вращения.

Экономичная и безаварийная работа гидроагрегата в этих режимах зависит от правильной наладки системы регулирования.

В настоящем Приложении использованы следующие принципиальные схемы ЛМЗ:

для ЭГР с ламповым электронным усилителем первой модификации А-2052699;

для ЭГР с ламповым электронным усилителем второй модификации А-2065453;

для ЭГР-М Бу-2078383; для ЭГР-2М Бу-2101356;

для ЭГР-1Т Б-2139177, Б-2137188, Б-2150648;

для ЭГР-2И-1 2168901 ЭЗ, 2168902 ЭЗ, 2168904 ЭЗ, 2169690 ЭЗ.

Ж.2. Принятые сокращения

САР - система автоматического регулирования;

РЧВ - регулятор частоты вращения;

ЭГР - электрогидравлический РЧВ;

ЭГРК - то же с комбинатором;

НА - направляющий аппарат гидротурбины;

ЛРК - лопасти рабочего колеса гидротурбины;

СМА - сервомотор направляющего аппарата;

МИЧ (МИЧВ, МИЧО) - механизм изменения частоты;

МИМ - механизм изменения мощности;

МОО - механизм ограничения открытия НА;

МНУ - маслонапорная установка;

ОС - обратная связь;

ЖОС - жесткая обратная связь;

МЖОС - местная ЖОС;

ИОС - изодромная обратная связь;

ГОС - гибкая обратная связь;

ЧЧЭ - частоточувствительный элемент;

М - маятник (механический ЧЧЭ);

ПЗ - побудительный золотник;

ГЗ - главный золотник;

ЭГП - электрогидравлический преобразователь;

КНА - контакты направляющего аппарата;

XX - холостой ход.

Ж.3. Виды и объем испытаний

Ж.3.1. Контрольные натурные испытания

Ж.3.1.1. Контрольным испытаниям должен подвергаться каждый регулятор частоты вращения в целях проверки соответствия его требованиям стандартов и техническим условиям поставки, а также проверки качества изготовления, монтажа, наладки и готовности регулятора к вводу в эксплуатацию.

Контрольные испытания системы регулирования частоты вращения гидротурбины предусматривают проверку и наладку в процессе испытаний узлов РЧВ и комплексное опробование системы регулирования в целом при пусконаладочных работах.

Испытания проводятся вначале при опорожненной спиральной камере, а затем продолжаются после заполнения водой водоподводящих и водоотводящих сооружений.

Ж.3.1.2. Перед испытаниями в период монтажных работ должна быть осуществлена лабораторная проверка элементов РЧВ, проверка правильности проектирования, изготовления и выполнения монтажных работ, а также проверка системы РЧВ при подаче напряжения электропитания и давления масла от МНУ. К началу контрольных испытаний гидроагрегата система МНУ и лекажный агрегат должны пройти наладку и работать в автоматическом режиме.

Объем контрольных испытаний должен быть наиболее полным, так как данные этих испытаний служат материалом для приемочной комиссии, а снятые характеристики отдельных элементов и системы в целом входят в техническую документацию по системе регулирования гидротурбин, необходимую для эксплуатации ГЭС.

Ж.3.1.3. Объем испытаний, проводимых до заполнения водой проточного тракта:

снятие характеристик механизмов управления регулятора частоты вращения (механизма изменения частоты вращения МИЧ, механизма изменения мощности МИМ, механизма ограничения открытия МОО);

проверка действия стопора направляющего аппарата и сигнализации в его конечных положениях;

опробование действия сервомотора направляющего аппарата турбины. Определение продолжительности полного открытия и закрытия направляющего аппарата при максимальном ходе главного золотника (время действия замедляющих устройств в сервомоторе не учитывается) от действия МОО и МИМ и золотника аварийного закрытия ЗАЗ. Определение постоянной времени сервомотора и времени демпфирования при закрытии направляющего аппарата;

опробование действия сервомотора рабочего колеса турбины. Определение продолжительности полного разворота и сворачивания лопастей при максимальном ходе его главного золотника. Определение постоянной времени сервомотора;

определение зависимости открытия направляющего аппарата от хода поршня сервомотора;

определение зависимости угла разворота лопастей рабочего колеса турбины от хода поршня сервомотора;

определение числа полных ходов сервомотора направляющего аппарата при номинальном давлении в МНУ и отключенных маслонасосах;

определение комбинаторной зависимости у поворотно-лопастных гидротурбин;

определение протечек масла в системе регулирования при крайних (главный золотник смещен до упора) и среднем положениях сервомоторов регулирующих органов турбины;

определение утечек масла из системы регулирования в положении регулятора на автоматическом и ручном управлении при нормальном давлении в МНУ и фактической температуре масла;

определение мертвых ходов в рычажных и тросовых передачах прямой и обратной связи регулятора и коэффициентов передачи между элементами регулятора;

настройка контактов положения открытия сервомотора в РЧВ и КНА, задействованных в схемах технологической автоматики управления гидроагрегатом;

опробование и проверка в действии механизмов электрической части и механических узлов регулятора с имитацией пуска с пульта управления;

опробование действия механизмов и сигнализации аварийной остановки агрегата с имитацией ее работы от всех защитных устройств;

проверка показаний шкалы открытия НА и РК во всем диапазоне измерений на колонке регулятора и панелях автоматики;

определение значения и продолжительности открытия и закрытия холостых выпусков при различных скоростях сервомотора направляющего аппарата;

проверка работоспособности клапанов впуска воздуха (срыва вакуума) турбины, действующих через привод от СНА.

Ж.3.1.4. Объем испытаний, проводимых после заполнения водой турбинной камеры:

пробный пуск гидроагрегата на ручном управлении (согласно инструкции завода-изготовителя) посредством МОО;

снятие характеристики регуляторного генератора;

проверка действия регулятора на автоматическом управлении;

определение диапазона изменения частоты вращения от МИЧ при нулевом статизме (+5 % номинальной частоты);

определение амплитуды и периода колебаний поршня сервомотора НА и частоты вращения;

проверка устойчивости работы агрегата при различных уставках постоянной времени и интенсивности изодрома. Окончательный выбор уставок изодрома и статизма в режиме XX. Проверка переходного процесса регулирования при изменении ступенчатого сигнала от МИЧ в пределах 5 - 10 % номинальной частоты вращения.

Ж.3.1.5. Объем испытаний после подключения гидрогенераторов к энергосистеме:

снятие фактической зависимости мощности гидрогенератора от открытия НА (для фактического напора) при прямом и обратном ходе;

выбор уставок изодрома в режиме нагрузки;

определение диапазона изменения мощности от МИМ при максимальном статизме;

проверка нормальной остановки гидроагрегата;

проверка автоматического пуска гидроагрегата и синхронизации его с энергосистемой;

аварийная остановка гидроагрегата с воздействием на ЗАЗ (КАЗ) после набора максимальной нагрузки;

проверка заводских гарантий регулирования со сбросом нагрузки последовательно 25, 50, 75 и 100 % номинальной или максимально возможной мощности в случае пуска гидроагрегата при пониженном напоре;

испытания на наброс нагрузки в случае необходимости по решению рабочей пусковой комиссии.

Условия проведения испытаний и значения мощностей при набросах нагрузки должны быть согласованы с заводами-изготовителями турбины и генератора. При набросах нагрузки необходимо фиксировать те же величины, что и при сбросах;

определение минимального значения давления в МНУ, достаточного для управления турбиной;

проверка закрытия НА при аварийно низких давлении и уровне масла в котле МНУ;

определение минимального значения давления в МНУ, необходимого для создания проектного натяга в звеньях направляющего аппарата;

определение перестановочных усилий направляющего аппарата и лопастей рабочего колеса при номинальном и минимальном давлении в МНУ.

Ж.3.2. Приемо-сдаточные натурные испытания

Ж.3.2.1. Приемо-сдаточные натурные испытания системы

регулирования частоты вращения проводятся в целях определения гарантий, выдаваемых изготовителем (поставщиком). Испытания должны проводиться в соответствии с требованиями международного кода для испытаний систем регулирования гидравлических турбин. Приемо-сдаточные испытания проводятся на работающей турбине.

Ж.3.2.2. Перед началом испытаний необходимо проверить, что:

все оборудование находится в удовлетворительном состоянии (не имеет дефектов) и пригодно для проведения испытаний;

все шкалы соответствуют реальным значениям измеряемых величины;

система автоматического управления, сигнализации и защиты опробована и введена в работу;

регулятор частоты вращения полностью укомплектован в соответствии со спецификацией, на нем выставлены рабочие уставки параметров регулирования;

напор и расход во время испытаний имеют расчетные значения (или по согласованию заказчика и поставщика достаточны для их проведения);

высота всасывания и мощность турбины при испытаниях имеют значения, при которых исключается ее работа в кавитационном режиме;

давление масла в системе регулирования в пределах, обусловленных технической документацией на МНУ;

на все оборудование имеется необходимая техническая документация (спецификация, паспорт, чертежи, акты, формуляры, результаты комплексного опробования и пусконаладочных испытаний).

Ж.3.2.3. В объем приемо-сдаточных испытаний включаются следующие проверки предельных и установленных значений параметров системы регулирования:

пределов изменения командного сигнала;

необходимых давлений в сервомоторах для перемещения направляющего аппарата и лопастей рабочего колеса во всем диапазоне напоров и открытий;

диапазона изменения остающейся неравномерности (статизма) регулятора или диапазона изменения статизма регулирования;

диапазона изменения временной неравномерности;

времени закрытия и открытия сервомотора;

времени демпфирования сервомотора;

постоянной времени изодромного устройства;

постоянной времени воздействия по производной;

постоянной времени интегрирования;

постоянной времени сервомотора;

мертвой зоны в узлах регулятора;

неточности отработки входного сигнала;

запаздывания в элементах регулятора и системы регулирования в целом.

Ж.3.2.4. Проверка гарантий на управление объектом регулирования состоит в следующем:

испытания при пуске и остановке агрегата;

определение качества регулирования частоты вращения гидроагрегата на холостом ходу в установившемся и переходном режимах при подаче возмущающего воздействия, а также при работе гидроагрегата в энергосистеме и на индивидуальную нагрузку;

проверка гарантий регулирования, относящихся к изменению частоты вращения и давления в спиральной камере при сбросах и набросах нагрузки.

Ж.3.3. Сравнительные натурные испытаний головного образца

Ж.3.3.1. В натурных условиях на ГЭС эти испытания проводятся в целях сравнения статических и динамических характеристик различных типов регуляторов. Как правило, испытания проводятся заводами-изготовителями с участием научно-исследовательских и наладочных организаций.

Ж.3.3.2. Статические и динамические характеристики отдельных узлов регулятора частоты вращения могут быть получены при стендовых испытаниях на заводе, поэтому целью испытания системы регулирования в натурных условиях является испытание разомкнутой и замкнутой систем регулирования гидротурбины и дополнительно к этому снятие динамических характеристик САР при различных настройках регулятора в виде переходных либо частотных характеристик.

Ж.3.4. Эксплуатационные испытания

Ж.3.4.1. При плановом ремонте основного оборудования система регулирования также должна выводиться в капитальный или текущий ремонт. При этом производятся нормальные испытания системы регулирования.

Ж.3.4.2. Ускоренные испытания при капитальном ремонте для узлов, подлежащих ремонту, производятся до и после вывода агрегата из капитального ремонта. В объем этих испытаний входит:

снятие характеристик основных узлов регулятора (частото-чувствительного элемента, усилителей преобразователей, изодрома, рычажной передачи, сервомотора);

определение минимального времени закрытия и открытия сервомотора;

определение чувствительности по различным входным сигналам и определение неточности регулятора;

снятие статической характеристики регулятора и комбинаторной зависимости;

определение перестановочных усилий до и после капитального ремонта;

испытания на сбросы (набросы) нагрузки с гидроагрегата.

Ж.3.4.3. Испытания при среднем ремонте должны проводиться в следующем объеме:

проверка уставок и снятие характеристик основных узлов регулятора по сокращенной программе, например, определение выхода штифта маятника при номинальной частоте вращения, проверка действующей уставки постоянной времени изодромного устройства, определение коэффициента передачи от измерителя частоты до главного золотника;

проверка качества синхронизации, времени реализации сигнала от МИСВ;

проверка уставки статизма регулятора частоты вращения; определение мертвых ходов в рычажной системе передач.

Ж.3.5. Исследовательские натурные испытания

Ж.3.5.1. Исследовательские натурные испытания проводятся для устранения дефектов, выявленных в процессе эксплуатации. Объем этих испытаний значительно меньше, чем испытаний, проводимых при пусконаладочных работах. Он определяется в основном характером и количеством обнаруженных дефектов системы регулирования. Иногда приходится выполнять специальные исследования: причин вибрации высокой частоты, возникающей при определенных режимах в регуляторе гидротурбины; определение рационального закона закрытия направляющего аппарата и сворачивания лопастей рабочего колеса в целях предотвращения подъема вращающихся частей гидроагрегата и др.

Ж.3.5.2. К указанному виду испытаний относятся также специальные испытания, связанные с упрощением и реконструкцией системы регулирования, а также с разработкой новых способов управления гидроагрегатами, например, в связи с изменением режима работы ГЭС, применением новых принципов автоматизации гидроагрегата и пр.

Ж.4. Подготовка к испытаниям и условия их проведения

Ж.4.1. Общие требования

Ж.4.1.1. Каждый вид испытаний должен быть подготовлен, проведен в соответствии с требованиями безопасного выполнения работ в определенных условиях работы основного оборудования.

Ж.4.1.2. Должны быть назначены лица, ответственные за проведение испытаний. Руководитель испытаний является ответственным за весь персонал, участвующий в испытаниях, за правильность измерений, расчетов результатов и подготовку окончательного отчета. По любому вопросу проведения испытаний его решение является окончательным. Все члены бригады, проводящей испытания, должны обладать необходимым практическим навыком для работы с вверенными им приборами.

Ж.4.1.3. Должна быть составлена, согласована и утверждена рабочая программа испытаний. Рабочая программа составляется на основании типовой программы. В ней указываются конкретно производимые отключения и переключения в электрической схеме первичных соединений, отключения и переключения в электрической и гидромеханической схемах системы регулирования со станционным обозначением аппаратуры. Рабочая программа испытаний может составляться по одному или нескольким пунктам общей типовой программы.

Ж.4.1.4. Чертежи приспособлений и все необходимые для опытов данные, документы, спецификации, паспорта и отчеты по результатам эксплуатации должны быть предоставлены в распоряжение персонала, проводящего испытания. Персонал должен иметь доступ ко всей информации по турбине, водоводам, генератору с его регулятором напряжения и связанной с ним электрической сети.

Ж.4.1.5. При проведении испытаний на работающем агрегате оборудование должно быть осмотрено не более чем за три дня до начала опытов, если нет других указаний в программе испытаний.

Это определяется необходимостью проверки укомплектования системы регулирования согласно спецификации; пределы измерений средств измерений соответствуют значениям измеряемых параметров, все измерительные соединения свободны от посторонних предметов, подключены и действуют датчики и приспособления, установленные для опытов.

Ж.4.1.6. Для выполнения работ, связанных с изменением режима работы агрегата или выводом оборудования из работы, должны быть своевременно в установленном порядке поданы заявки в соответствующие диспетчерские центры.

Ж.4.1.7. Перед выполнением пусконаладочных испытаний по окончании монтажа должны быть проверены электрические цепи и маслопроводы системы регулирования в соответствии с электрической и гидромеханической схемами. Замеченные несоответствия должны быть устранены.

Ж.4.1.8. Сопротивление изоляции электрооборудования относительно корпуса на зажимах присоединения напряжения постоянного и переменного тока проверяется мегаомметром на 1000 - 1500 В, а на остальных зажимах - мегаомметром на 500 В. Сопротивление изоляции должно быть не менее указанного в заводской технической документации (10 МОм). Перед проверкой должно быть отсоединено заземление электрической схемы; отсоединены со стороны кабеля цепи питания постоянного и переменного тока; снята электронная лампа, закорочены все диоды и все выводы транзисторов (в регуляторах ЭГР (К)-1T; ЭГР(К)-2И-1), изъяты из стойки блоки и субблоки. Для проверки изоляции электрических цепей субблоков относительно каркаса следует пользоваться специальным разъемом, представляющим собой розетку, все выводы которой со стороны подключения жгута соединены между собой накоротко.

Ж.4.1.9. Маслопроводы системы регулирования должны быть проверены рабочим давлением масла. В системе регулирования не должно быть утечек и протечек масла (кроме технологических). При устранении неисправностей следует соблюдать меры безопасности.

Ж.4.2. Указания мер безопасности

Ж.4.2.1. При испытаниях и наладке системы регулирования необходимо руководствоваться требованиями действующих «Правил техники безопасности при эксплуатации электроустановок», «Правил пользования и испытания защитных средств, применяемых в электроустановках» и «Правил технической эксплуатации электрических станций и сетей».

При наладке необходимо также пользоваться требованиями действующих «Правил техники безопасности при электромонтажных и наладочных работах».

Ж.4.2.2. Не следует допускать к проведению работ по испытанию и наладке системы регулирования лиц, не знакомых с действием узлов и всей системы регулирования и не имеющих допуска к работе с ней.

Ж.4.2.3. Для предотвращения несчастных случаев при проведении работ необходимо вывешивать предупредительные плакаты около органов управления и вблизи подвижных частей системы регулирования.

Ж.4.2.4. Затяжку штуцерных и фланцевых соединений, болтов и гаек механизмов производить при снятых давлении масла и напряжении питания электрических и электромеханических аппаратов.

Ж.4.2.5. Пайку соединений в электрической схеме производить при снятом напряжении паяльником соответствующей мощности, включенным через разделительный трансформатор (с заземленным жалом при работе с микросхемами).

Ж.4.3. Типовая программа испытаний

Ж.4.3.1. Перед проведением испытаний регуляторов частоты вращения турбины необходимо выполнить предварительный объем работ, не связанных с режимом работы гидроагрегата, а именно:

организация рабочих мест для измерения и осциллографирования параметров;

изготовление приспособлений для установки датчиков, их предварительная градуировка;

расстановка аппаратуры, монтаж и наладка вспомогательных схем для испытания.

Ж.4.3.2. Время, необходимое для выполнения подготовительных работ, не регламентировано и не включено во время проведения испытаний. Типовая программа приводится для испытаний исправной системы регулирования (см. таблицу).

Таблица Ж.1 Типовая программа испытаний систем регулирования гидротурбин

Режим работы агрегата. Аварийная готовность

Наименование испытаний

Продолжительность испытаний, ч

Примечание

1. Остановлен. Водовод осушен закрыты ремонтные затворы со стороны верхнего и нижнего бьефов. Электрическая схема разобрана разъединителем. Имеется доступ в спиральную и турбинную камеры

Определение зависимости открытия НА от хода штока сервомотора или регулирующего кольца

8

Определение зависимости угла разворота ЛРК от открытия НА. Градуировка шкалы указателя угла ЛРК

4

Определение времени закрытия и открытия аварийного (быстродействующего) затвора. Проверка действия последней ступени защиты от разгона

1

Проверка действия схемы автоматического пуска (и остановки)

0,5

Если в схеме пуска остановки Задействован турбинный затвор

2. Остановлен. Затвор со стороны верхнего бьефа закрыт (турбинный). Спиральная камера разгружена от напора. Электрическая схема разобрана разъединителем. Аварийная готовность 30 мин.

Проверка действия сервомотора НА, определение времени открытия и закрытия при максимальном ходе главного золотника, времени демпфирования, проверка действия стопора, характеристики сервомотора. Определение характеристики сервомотора

3

Те же испытания проводятся для отсекателя ковшовых турбин

Проверка действия сервомотора РК, определение разворота и сворачивания продолжительности полного лопастей при максимальном ходе главного золотника. Определение характеристики сервомотора РК

2

Определение комбинаторной зависимости при различных настройках коррекции по напору. Градуировка шкал указателей

2

Те же испытания проводятся для ковшовых турбин

Проверка действия регулятора при имитации работы схемы автоматического пуска и остановки, перевода режим СК, проверка настройки КНА

2

Проверка работы защиты от разгона с воздействием на ЗАЗ

0,5

Определение протечек масла в системе регулирования

6

Определение значения и продолжительности открытия и закрытия холостых выпусков, клапанов впуска воздуха, срыва вакуума, действующих через привод от СНА

1

3. Работает на XX, отключен от сети, на ручном и автоматическом управлении. Электрическая схема разобрана разъединителем. Аварийная готовность 30 мин

Проверка действия и уставок регулятора при пуске и остановке агрегата, при синхронизации генератора с энергосистемой

1,5

Определение характеристики пендель-генератора и характеристики измерителя частоты (ЧЧЭ, ИПЧ, маятника)

1

Проверка уставок стабилизирующих элементов (изодрома)

0,5

Определение характеристики механизма изменения частоты (МИЧ, МИСВ)

0,5

Проверка уставок реле частоты вращения (реле оборотов), задействованных в схемах РЧВ и защиты от разгона

0,5

Испытания для определения характеристик объекта регулирования

1,5

4. Работает в сети на ручном управлении без изменения нагрузки. Аварийная готовность 15 мин.

Определение характеристик узлов электрического шкафа ЭГР, электрогидравлического преобразователя

8

Проверка цепей электропитания ЭГР

1

5. Работает в сети на ручном управлении с изменением нагрузки в диапазоне от 0 до 100 %. Аварийная готовность 15 мин.

Определение диапазона действия МОО, МИМ, МИСВ при различных значениях остающейся неравномерности. Градуировка механизмов

8

Определение нечувствительности и неточности системы регулирования

2

Определение характеристики сервомоторов НА и РК

6

Проверка закрытия НА при аварийно-низком давлении в МНУ. Определение минимального значения давления в МНУ, достаточного для управления турбиной

4

Определение перестановочных усилий НА и ЛРК при номинальном и минимальном давлении в МНУ

4

Определение характеристик объекта регулирования

4

6. Работает в сети на автоматическом управлении с изменением нагрузки от 100 % до 0. Аварийная готовность 30 мин.

Проверка гарантий регулирования (при сбросах нагрузки) и защиты от разгона при неисправности РЧВ

4

Сброс нагрузки отключением генераторного выключателя

Проверка действия регулятора при переводе агрегата в режим СК и при выводе из режима СК

1

Определение оптимальных уставок РЧВ при работе агрегата в мощной энергосистеме на индивидуальном управлении и при работе в системе группового регулирования активной мощности (ГРАМ)

3

Определение диапазона действия ограничителей открытия НА «сверху» и «снизу»

0,5

7. Работает на изолированную нагрузку.

Аварийная готовность 15 мин.

Определение оптимальных уставок РЧВ при работе агрегата на изолированную нагрузку

2

Проверка гарантий регулирования при сбросах и набросах нагрузки

4

Сбросы и набросы нагрузки производятся при отключении от энергосистемы для работы изолированную нагрузку

Ж.5. Испытания отдельных узлов гидромеханических регуляторов частоты вращения

Ж.5.1. Снятие статической характеристики маятника

Ж.5.1.1. Статическая характеристика маятника представляет собой зависимость выхода штифта (буксы) маятника от частоты вращения или частоты тока.

Целью снятия статической характеристики является определение:

ее линейности;

крутизны характеристики;

мертвой зоны (нечувствительности);

выхода штифта маятника при номинальной частоте вращения.

Характеристика маятника может быть снята разными способами:

при остановленном агрегате (маятник приводится во вращение электродвигателем постоянного тока с регулируемой частотой вращения);

при работе агрегата в режиме холостого хода;

на ограничителе открытия или на ручном управлении;

на автоматическом управлении в пределах зоны действия МИСВ.

Частота вращения маятника определяется при установившемся ее значении путем измерения частоты напряжения возбужденного генератора, если частота пендель-генератора отлична от 50 Гц. При этом значение напряжения генератора рекомендуется поддерживать неизменным.

Выход штифта измеряется индикатором с погрешностью ±0,005 мм.

На регуляторах с непосредственным сочленением маятника с иглой или буксой побудительного золотника (регуляторы типов Р, РС, РКМ и т.д.) измеряется ход тяги обратной связи к побудительному золотнику при работе на МИСВ в установившемся режиме. Полученная при этом характеристика (рис. 1) будет показывать суммарную мертвую зону маятника и побудительного золотника.

Для обнаружения нечувствительности характеристику маятника следует снимать при повышении и снижении частоты вращения. Точки прямого и обратного ходов нанести на график и соединить плавной линией.

Ж.5.1.2. Примерный вид статической характеристики маятника показан на рис. 1. Мертвая зона маятника определяется из выражения

(1)

Разброс точек при прямом или обратном ходе обычно вызван недостаточной точностью измерения. Мертвая зона современных маятников очень мала (около 0,01 %). В пределах полного хода штифта маятника характеристика должна быть линейной.

По характеристике определяется неравномерность маятника, равная значению изменения частоты вращения, необходимому для полного хода его штифта и выраженному в процентах от средней частоты вращения:

(2)

Крутизна характеристики маятника выражается удельной неравномерностью (dуд), равной изменению частоты вращения (в процентах) при ходе штифта на 1 мм (обычно это значение составляет 2 - 4 %/мм).

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 1. Статическая характеристика маятника с зоной нечувствительности

Ж.5.2. Определение характеристик изодромного устройства

Ж.5.2.1. Изодромная обратная связь применяется в регуляторах частоты вращения для стабилизации процесса регулирования и характеризуется двумя параметрами: значением временной неравномерности Вt и постоянной времени Td. Порядок определения этих параметров зависит от типа регулятора и примененного в нем изодромного устройства. Различают следующие виды изодромных механизмов: фрикционно-лобовой; масляный катаракт без предварительного натяжения пружины; масляный катаракт с предварительным натяжением пружин.

Фрикционно-лобовой изодром применялся на первых типах регуляторов частоты вращения. В нем не предусматривается возможность изменения его параметров, поэтому при проверке определяется только полное время и точность возврата диска из крайнего положения в среднее.

При применении масляных катарактов обычно предусматривается возможность изменения обоих параметров. Величина временной неравномерности изменяется ступенями или плавно при изменении соотношения между плечами рычагов, а величина постоянной времени - при изменении положения иглы дросселирующего отверстия.

Ж.5.2.2. В заводском паспорте на регулятор для каждого положения рычага обычно указывается значение временной неравномерности. При отсутствии таких данных оно может быть определено следующим образом. На регуляторах с однопоршневым катарактом (УК, РК, Р, Фойт и т.д.) следует предварительно определить коэффициент передачи от поршня сервомотора НА к стакану катаракта: остановленном агрегате с опорожненной спиральной камерой либо на работающем в сети агрегате. Перемещения сервомотора измеряются миллиметровой линейкой, стакана - штангенциркулем или стрелочным индикатором. Далее по соотношению плеч рычагов или с помощью двух индикаторов необходимо определить коэффициент передачи К2 от поршня катаракта к штифту маятника (или маятникового рычага в точке его соприкосновения со штифтом). Для регуляторов Канова и Фойт К2 = 1,0.

Значение временной неравномерности рассчитывается следующим образом:

b1 = dуд ? К1 ? К2 ? 100 % (3)

На регуляторе PC временная неравномерность определяется аналогично; отличие состоит в том, что правую часть приведенного соотношения следует умножить на КЗ, равный отношению перемещений выходного и входного поршней катаракта. Этот коэффициент определяется при полностью закрытом дросселирующем отверстии.

На регуляторе РКМ, как и на регуляторе с однопоршневым катарактом, следует определить коэффициент передачи от сервомотора НА к входному поршню катаракта. Так как в этом катаракте нельзя измерить перемещение выходного поршня, то определение коэффициента передачи от входного поршня к буксе маятника производится косвенно по смещению иглы побудительного золотника. Для этого от поршня катаракта следует отсоединить обратную связь по положению сервомотора направляющего аппарата. При работающем в сети агрегате и полностью закрытом дросселирующем отверстии произвести вручную смещение входного поршня и измерить перемещение иглы побудительного золотника, которое в установившемся состоянии равно смещению буксы маятника.

Определение временной неравномерности производится по приведенному отношению (3).

В общем случае значение временной неравномерности косвенно может быть определено по осциллограмме переходного процесса. Опыт должен проводиться на работающем в сети агрегате в следующей последовательности:

полностью закрыть дросселирующее отверстие катаракта;

остающуюся неравномерность установить равной нулю;

рукоятку МИСВ резко сместить из первоначального положения на 0,5 - 1 оборот.

Примерный вид переходного процесса приведен на рис. 2.

Вначале регулятор работает как статический, затем из-за протечек масла в катаракте сервомотор НА может медленно смещаться. Значение неравномерности определяется так:

(4)

где Dn - смещение МИСВ, пересчитанное на изменение частоты вращения, %;

Ymax - полный ход сервомотора НА, мм (обычно принимаемый за 100 %);

DY - значение первоначального (быстрого) перемещения сервомотора НА, мм.

Ж.5.2.3. Постоянная времени изодрома определяется по его переходной характеристике, представляющей собой зависимость перемещения поршня катаракта во времени при ступенчатом смещении стакана. Примерный вид такой характеристики приведен на рис. 3. При быстром смещении стакана поршень смещается на то же значение, затем под действием пружины по мере перетекания масла через дросселирующее отверстие он возвращается в начальное положение. Теоретически кривая возврата выражается экспоненциальной кривой. Практически характеристика изодрома отличается от экспоненты, поэтому постоянную времени следует определять по средней части характеристики (2 - 4 мм смещения поршня от среднего положения). В тех случаях, когда характеристика резко отлична от экспоненты, настройку катаракта условно можно характеризовать временем перемещения поршня последнего миллиметра хода к среднему положению.

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 2. Переходная характеристика открытия направляющего аппарата

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 3. Переходная характеристика изодрома

Характеристику катаракта следует снимать следующим образом. На шток поршня катаракта установить индикатор. Поршень катаракта принудительно вывести из среднего положения на 5 - 10 мм (для облегчения выдернуть иглу). Затем поршень отпустить и после того как он начнет возвращаться к своему среднему положению, последовательно с помощью секундомера измерить время прохождения поршнем заранее намеченных точек, например: 10-5-3-2-1,5-1,0-0,8-0,6-0,5-0,4-0,3-0,2-0,1 мм.

Характеристику необходимо снимать при возвращении поршня катаракта к среднему положению как сверху вниз, так и снизу вверх.

Невозврат поршня в среднее положение не должен превышать 0,02 мм.

На регуляторах Фойт, Канова, РКМ и др., где доступ к поршню катаракта затруднен, его характеристику следует снимать при перемещении тяги обратной связи, которую в этом случае необходимо расцепить с валом выключателя. На регуляторе Канова ход поршня катаракта измерять индикатором по перемещению специального хомутика, Надеваемого для этой цели на втулку крепления пружины, а на регуляторах Фойт и РМ - по смещению иглы побудительного золотника.

Характеристики могут быть сняты как при остановленном агрегате, так и при работе его в энергосистеме. В первом случае сервомотор НА следует застопорить, поскольку осушается спиральная камера, а маятник вращать с постоянной скоростью от специального электродвигателя.

Порядок снятия характеристики следующий. Тягу обратной связи резко сместить из своего начального положения и зафиксировать. При этом поршень катаракта сначала также смещается, а затем начинает возвращаться к среднему положению. Игла побудительного золотника все время следит за смещением буксы, поэтому по ее перемещению следует измерять смещение поршня катаракта. Характеристику необходимо снимать при смещении тяги на закрытие и на открытие.

При наличии осциллографа характеристики катаракта могут быть записаны на ленте. Для этого следует вместо индикатора установить датчик перемещения (реохорд, тензодатчик). Порядок снятия характеристик тот же.

Переходные характеристики катаракта должны сниматься при различных положениях дросселирующей иглы. По характеристикам определяется постоянная времени изодрома.

Точность определения постоянной времени изодрома в связи с отличием его переходной характеристики от экспоненциальной кривой невысока, погрешность составляет ±5 % измеренного значения.

Ж.5.3. Снятие характеристики сервомотора

Ж.5.3.1. Характеристика сервомотора - это зависимость скорости его перемещения от хода распределительного золотника. Практический интерес представляет определение характеристик только тех сервомоторов, которые являются интегрирующими элементами регуляторов частоты вращения, т.е. от которых заводится гибкая обратная связь. На большинстве регуляторов - это главный сервомотор направляющего аппарата, на регуляторе типа «Канова» - это вспомогательный сервомотор.

Целью снятия характеристики является определение нечувствительности по ходу золотника и определение скоростных свойств сервомоторов. Нечувствительность зависит от значений положительных перекрытий на золотнике и сервомоторе, сил сухого трения в направляющем аппарате. Нечувствительность для разных регуляторов различна, но обычно не превышает ±0,2 мм.

Ж.5.3.2. Характеристику главного сервомотора (рис. 4) следует снимать при разгруженной от напора спиральной камере и отсоединенной от сервомотора тяге обратной связи. Перемещение золотника измерять индикатором, перемещение сервомотора - миллиметровой линейкой, а время - секундомером. Скорость сервомотора выражается в 1/с

(5)

где t - время перемещения сервомотора на DY.

Смещение главного золотника на определенное значение задается рукояткой ограничителя открытия. Скорость перемещения сервомотора определяется в пределах его рабочего хода, за исключением зоны демпфирования. Погрешность в определении скоростной характеристики может быть около 5 %.

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 4. Характеристика главного сервомотора

Ж.5.3.3. Характеристику сервомотора без отключения обратной связи следует снимать следующим образом. Ограничитель открытия и МИСВ отвести в положение, обеспечивающее полное открытие направляющего аппарата. На вспомогательном сервомоторе главного золотника установить ограничения хода на открытие и закрытие. Воздействием на побудительный золотник (вручную) главный золотник сместить до установленного упора и удерживать в этом положении на протяжении времени перемещения сервомотора в измеряемом диапазоне открытий.

Ж.5.3.4. Характеристика главного сервомотора может быть определена и при работе агрегата в энергосистеме. Порядок снятия характеристики тот же. При этом из-за изменения гидравлических усилий, действующих на лопатки НА, скорость движения сервомотора будет изменяться, поэтому секундомером определяется средняя скорость. Для более точного определения скорости сервомотора следует осциллографировать его перемещение.

Ж.5.4. Градуировка механизма остающейся неравномерности

Ж.5.4.1. Указанный механизм регуляторов частоты вращения обычно имеет шкалу, для каждого деления которой в паспорте регулятора указывается значение остающейся неравномерности. Градуировка проводится в тех случаях, когда отсутствуют паспортные данные или неравномерность маятника отличается от паспортного значения.

Ж.5.4.2. Для градуировки при различных уставках остающейся неравномерности необходимо снять статическую характеристику регулятора, представляющую собой зависимость изменения открытия направляющего аппарата от частоты вращения агрегата (или частоты генераторного напряжения) при неизменном положении МИСВ. Статическую характеристику регулятора рекомендуется снимать косвенным методом.

Для этого при работе агрегата в энергосистеме (в условиях практически неизменной частоты) воздействием на механизм изменения частоты вращения нагрузку на агрегате изменить ступенями во всем диапазоне от нуля до максимальной. В каждом положении механизма при установившемся режиме следует измерить ход гайки МИСВ стрелочным индикатором и открытие НА - миллиметровой линейкой. При работе агрегата на холостом ходу определить зависимость частоты вращения от положения гайки МИСВ. Из сопоставления двух зависимостей построить статическую характеристику регулятора следующим образом. Измеренные при одном и том же положении МИСВ значения открытия НА и частоты вращения нанести на график. По статической характеристике (рис. 5) определяется значение (в %) остающейся неравномерности на данной установке механизма:

(6)

где Dnмакс - определяется при графическом построения характеристики как наибольшее изменение частоты вращения при полном ходе НА, 1/с;

пном - номинальная частота вращения 1/с.

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 5. Статическая характеристика регулятора

Ж.5.4.3. Статическая характеристика регулирования, представляющая собой зависимость мощности агрегата от частоты вращения может быть определена аналогично статической характеристике регулятора. Мощность генератора следует измерять трехфазным ваттметром либо двумя однофазными ваттметрами класса точности 0,5, либо по счетчику активной энергии.

По статической характеристике регулирования (рис. 6) определить значение статизма в рассматриваемой рабочей точке (Pt0):

(7)

Нелинейность характеристики обусловлена нелинейной зависимостью мощности от открытия.

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 6. Статическая характеристика регулирования

Ж.5.5. Проверка механизма изменения частоты вращения МИСВ

Ж.5.5.1. Целью указанной проверки является определение диапазона действия МИСВ и чувствительности регулятора (по смещению МИСВ).

Ж.5.5.2. Диапазон действия МИСВ следует проверять при работе агрегата на холостом ходу с нулевой степень остающейся неравномерности, для чего поворотом рукоятки МИСВ от одного упора до другого определить при установившемся режиме минимальную и максимальную частоту вращения агрегата.

Ж.5.5.3. Чувствительность регулятора по положению механизма изменения частоты вращения следует определять при работе агрегата в энергосистеме (в условиях постоянства частоты). Для этого вручную медленно поворачивая рукоятку МИСВ в одну сторону до момента трогания сервомотора, отметить положение рукоятки МИСВ, затем медленно поворачивая рукоятку в другую сторону до момента трогания сервомотора в обратную сторону, так же отметить положение рукоятки. Область между двумя отмеченными положениями рукоятки МИСВ, в которой сервомотор не перемещается, равна мертвой зоне регулятора по положению МИСВ.

Ж.5.6. Проверка механизма ограничителя открытия МОО

Ж.5.6.1. Цель проверки состоит в установлении диапазона действия МОО и нечувствительности регулятора по входу от него. Диапазоне действия МОО должен обеспечивать изменение открытия НА от нуля до максимального открытия.

Ж.5.6.2. Проверку следует производить либо на остановленном агрегате с опорожненной спиральной камерой, либо на работающем в сети агрегате с полностью отведенным МИСВ.

Проверку МОО производить так же, как для МИСВ.

Ж.5.7. Определение мертвого хода в прямой и обратной связях рычажных передач регулятора

Ж.5.7.1. Определение мертвого хода следует производить с помощью двух индикаторов, установленных по концам проверяемой системы. Так, при определении мертвого хода в обратной связи индикаторы необходимо установить на шток поршня сервомотора и на золотниковый рычаг в месте соединения с катарактом (рис. 7 - для регуляторов УК).

Ж.5.7.2. Мертвый ход в передаче следует определять по зависимости между перемещениями двух точек проверяемой системы при прямом и обратном ходах.

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 7. Схема для определения мертвого хода в рычажной системе обратной связи:

1 - сервомотор; 2 - катаракт

Ж.6. Испытания электрогидравлических регуляторов частоты вращения

Ж.6.1. Проверка цепей электропитания

Ж.6.1.1. Проверку цепей электропитания в регуляторе ЭГР необходимо производить при наличии напряжения питания от щита собственных нужд на зажимах 095-096 220 В постоянного тока. При этом на остановленном агрегате ток в пусковой катушке ЭГП должен быть не менее 10 мА, якоря реле 10Р и 11Pподтянуты, токи в рабочих катушках ЭГП равны нулю, а стрелка балансного прибора установлена на нуль. При напряжении переменного тока собственных нужд ГЭС на зажимах 001-002 220 В напряжение на вторичной обмотке трансформатора (отпайки 3 - 4) должно быть 110 В. Напряжение накала лампы (6,0 - 6,3) В. При необходимости регулирование напряжения накала произвести изменением отпаек дросселя L31 или изменением воздушного зазора в сердечнике дросселя.

Напряжения на отпайках трансформатора питания Т6 (1-2, 3-4, 5-6, 7-8, 9-10, 11-12, 13-14) должны быть соответственно равны 110, 158, 158, 128, 128, 47, 33 В. Напряжение постоянного тока в цепях анодного напряжения и смещения на конденсаторах С3 и С4 - 190 В, на резисторе R 305 в цепи накала лампы (16-17) В.

Напряжение цепей питания от тахогенератора следует проверять при работе агрегата в сети (на ручном управлении) или на холостом ходу с номинальной частотой вращения. Последнюю контролируют по частотомеру, включенному на напряжение тахогенератора. Напряжение на вторичной обмотке трансформатора Т22 (зажимы 208-209, 205-206, 008-010) должно быть (110 7+ 02) В. При необходимости его регулирование следует произвести изменением отпаек от первичной или вторичной обмотки трансформатора. Показание электротахометра корректируют резистором R312.

Методика проверки цепей электропитания ЭГР второй модификации аналогична. При наличии оперативного постоянного тока на зажимах 001-010 питание схемы регулятора постоянным током подать включением автомата А501, а напряжение (220 В) контролировать на зажимах 057-058.

Напряжение переменного тока собственных нужд ГЭС 220 В с зажимов 048-049 подать в схему регулятора на трансформатор Т401 включением автомата А502 и контролировать на зажимах 425-426. Напряжение на вторичной обмотке Т401 (110 В), измеренное на зажимах 113-114, регулировать отпайками первичной обмотки. Напряжение на отпайках питающего трансформатора Т105 (выводы 1-3, 2-4, 5-7, 6-8, 10-12, 13-15, 11-19) соответствен но должно быть 110, 128, 158, 47, 33, 128, 158 В. Напряжения на конденсаторах С101, С102 - 190 В, на резисторе R108 в цепи накала лампы - (16-17) В. Напряжение накала лампы Л101, равное (6 - 6,3) В, регулировать дросселем L102.

Напряжение тахогенератора регулируют отпайками на первичной или вторичной обмотках трансформатора Т402; оно измеряется на зажимах 044-045 (227-228) при номинальной частоте вращения и должно быть (110 7+ 02) В.

Напряжение питания схем защиты от разгона и контроля частоты вращения, измеренное на зажимах 037-038 должно быть (70 - 75) В при номинальной частоте вращения. Показание электротахометра корректируют резистором R410 или R411.

Ж.6.1.2. Проверку цепей электропитания в регуляторах ЭГР-М, ЭГР-2М можно производить на агрегате, работающем в сети или на холостом ходу с номинальной частотой вращения при включенном автомате А001. Напряжение питания от тахогенератора на вторичной обмотке трансформатора Т001, измеренное на зажимах 053-054 в ЭГР-М (058-059 в ЭГР-2М), должно быть (110 7+ 02)В. Регулирование этого напряжения производится на отпайках первичной и вторичной обмоток Т001. В ЭГР-М напряжение на вторичных обмотках питающего трансформатора Т105 должно быть: на выводах (2-4) и (4-6), (8-10) и (10-12) - 50 В, (5-7) - 100 В. На вторичных обмотках питающего трансформатора Т204: на выводах (2-4) - 35 В, на выводах (6-8) - 35 В, на выводах (5-7) - 30 В. В регуляторе ЭГР-2М напряжение на вторичных обмотках питающего трансформатора Т105 должно быть: на выводах (2-4) и (4-6) - 7,5 В, (8-10) и (10-12) - 36 В, (5-7) - 120 В, (9-11) и (13-15) - 130 В. На вторичных обмотках питающего трансформатор Т201: на выводах (2-4) и (6-8) - 250 В, (5-7) - 55 В.

На вторичных обмотках питающего трансформатора Т204 на выводах (2-4) и (4-6) - 23 В, (5-7) - 25 В.

При наличии напряжения переменного тока собственных нужд 220 В на зажимах 605-606 и включенном выключателе П601 напряжение а отпайках трансформатора Т601 питания схемы настройки по напору в регуляторах ЭГР-М (2М) должно быть: на выводах (1-9) - 240 В, (1-3) - 21 В, (1-5) - 110 В, (2-4) - 25 В,(2-6) - 50 В, (8-10) - 22,5 В.

При номинальной частоте вращения агрегата напряжение питания схем защиты от разгона и измерения должно быть (70 - 75) В на зажимах 043-044 в регуляторе ЭГР-М, на зажимах 054-056 в регуляторе ЭГР-2М. Показание электротахометра корректируют резистором R402 или R403 в ЭГР-М, R402 в ЭГР-2М.

При наличии напряжения оперативного постоянного тока напряжение 220 В питания схемы в ЭГР-М (2М) на остановленном агрегате проверить на зажимах 001-010. При этом пусковой ток в катушке ЭГП в ЭГР-М должен быть (10 - 15) мА, а якорь реле Р406 в ЭГР-М (Р405 в ЭГР-2М) подтянут. В ЭГР-2М ток в катушке ЭГП должен быть равным 0, а стрелка балансного прибора установлена на нуль.

Ж.6.1.3. Проверку цепей электропитания в регуляторе ЭГР-1Т следует производить на агрегате, работающем в сети или на холостом ходу с номинальной частотой вращения при включенном автомате А001. Номинальную частоту вращения установить по частотомеру, включенному на напряжение тахогенератора. Напряжение питания цепей от тахогенератора и от сети собственных нужд проверить в контрольных гнездах на блоке питания регулятора (БПР), блоке защиты агрегата (БЗА) и блоке релейной автоматики (БРА). В случае необходимости значение напряжения питания цепей от тахогенератора на гнездах БПР регулируют на отпайках автотрансформатора Т001. Значения контролируемых напряжений указаны на контрольных гнездах блоков.

Настройку напряжения стабилизатора питания микросхем ±12,6 В в ГСС производят при снятых субблоках СБ20, СБ21, СБ22 регулированием резистора R6 в субблоке СБ19. При этом блок ГСС и субблок СБ19 должны быть подключены через испытательные гибкие шланги. Напряжение +12,6 В и -12,6 В измерить на контрольных точках 3 и 7 относительно общей точки схемы 1 на плате субблока СБ19.

При проверке цепей электропитания проверить освещение шкал контрольных приборов, показания электротахометров и при необходимости скорректировать показание тахометра гидромеханической колонки резистором R7 в блоке БЗА, а показание тахометра электрического шкафа - резистором R5 в блоке БПР.

Ж.6.1.4. Проверка цепей электропитания в регуляторе ЭГР-2И-1 может быть произведена как на остановленном, так и на работающем агрегате при наличии питания переменным током 220 В собственных нужд на зажимах 123-126 регулятора и постоянным оперативным током 220 В на зажимах 81-84. При исправных цепях питания регулятора должны светиться лампы Л1 (наличие постоянного тока 12 В) и Л2 (наличие постоянного тока 24 В). Бесперебойность питания регулятора проверить поочередным отключением напряжения переменного и постоянного тока. Проверить наличие питания датчиков переменным током 12 В 400 Гц на зажимах 46-18 электрического шкафа регулятора.

Ж.6.2. Проверка работы схемы автоматики регулятора

Ж.6.2.1. Проверку следует производить на агрегате с опорожненной спиральной камерой при имитации: пуска, включения в сеть, работы агрегата в различных режимах и остановки агрегата. Перед началом испытаний все механизмы управления должны быть установлены в положение, которое они занимают перед пуском на автоматическом управлении, кроме того, отключен ключ включения в групповое регулирование, автоматы питания постоянным и переменным током отключены. В регуляторе ЭГР-М на ряде зажимов 1К должны стоять штеккеры только те, что указаны на схеме. С помощью корректора стрелку балансного прибора и электротахометра установить на 0.

Ж.6.2.2. Испытания релейной части схемы могут быть проведены без опорожнения спиральной камеры на остановленном и переведенном на ручное управление агрегате.

Ж.6.2.3. Для проведения испытаний схемы автоматики в регуляторе ЭГР на зажимы 001-002 (или 301-302) подключить ЛАТР выводами «нагрузка», а на зажимы 201-202 - вольтметр. На зажимы 095-096 подать напряжение оперативного постоянного тока 220 В и проверить срабатывание реле 10Р и 41P. При увеличении и уменьшении напряжения питания переменным током собственных нужд проверить срабатывание и отпадание якоря реле 17Р, контролирующего напряжение накала лампы. Якорь реле должен отпадать при напряжении 110 - 130 В. Для имитации работы агрегата ЛАТР подключить выводами «нагрузка» на зажимы 013-014, а вольтметр для контроля напряжения питания цепей тахогенератора на зажимы 208-209. Для того, чтобы при испытаниях изменения частоты сети не отражались на работе регулятора, следует отключить измеритель-преобразователь частоты (LC-контур) на зажиме 309.

Ж.6.2.4. Пуск имитировать кратковременным замыканием зажимов 351-348. Проверить правильность и последовательность операций пуска:

срабатывание реле 1P, 2P, 12Р;

отвод ограничителя на пусковое открытие и отпадание якоря реле 2Р в конце процесса отвода ограничителя;

сворачивание лопастей рабочего колеса и отпадание якоря реле 12Р при установке ролика на кулачок комбинатора;

открытие направляющего аппарата до пускового открытия (при испытаниях с опорожненной спиральной камерой). Затем подать напряжение переменного тока (от сети собственных нужд) на ЛАТР и постепенно увеличить напряжение на зажимах 208-209 до 110 В. Одновременно проверить напряжение срабатывания реле 20Р - (85 - 90) В, отпадание якоря реле 10P, 11P и наличие на балансном приборе полного сигнала «на прибавить». При напряжении 110 В направляющий аппарат должен закрыться от пускового открытия до открытия холостого хода, обеспечиваемого уставками механизмов МИЧ и МИМ. Действие реле управления двигателем МИЧ проверить замыканием зажимов 347-362 и 347-363 (имитация работы при синхронизации). Включение генераторного выключателя имитировать замыканием зажимов 347-354. При этом проверить:

срабатывание реле 5Р, 6Р, Р;

срабатывание реле 2Р и отвод ограничителя открытия на полное открытие.

Ж.6.2.5. Действие реле управления двигателем МИМ проверить от ключа управления. По окончании переходного процесса стрелка балансного прибора должна возвращаться к некоторому значению тока небаланса «на убавить», обусловленному уставкой длины распора.

Ж.6.2.6. При отключении напряжения, поданного от ЛАТР на зажимы 208-209, направляющий аппарат должен медленно перемещаться в сторону открытия. При необходимости правильность этого действия обеспечивается регулированием длины распора в гидромеханической колонке.

Ж.6.2.7. Действие автоматики при переводе агрегата в режим СК проверить при установке перемычки на зажимы 094-047. Следует контролировать:

срабатывание реле 7Р, 8Р;

закрытие ограничителя (и направляющего аппарата) до полного;

срабатывание реле 9Р, 10, 11P;

установку стрелки балансного прибора на 0;

сворачивание лопастей рабочего колеса.

Ж.6.2.8. Для вывода из режима СК следует снять перемычку с зажимов 094-047 и кратковременно замкнуть зажимы 351-348 (имитация пуска). Ограничитель открытия должен отвестись полностью, а направляющий аппарат открыться до установки МИМ; лопасти рабочего колеса должны установиться на комбинаторную зависимость.

Ж.6.2.9. Остановку имитировать снятием перемычки с зажимов 354-357 и установкой ее на зажимы 356-357.

Следует контролировать:

срабатывание реле 16Р (при снятии перемычки с зажимов 354-357) и сгон МИМ в положение открытия холостого хода;

закрытие направляющего аппарата до открытия холостого хода;

срабатывание реле 8Р (после установки перемычки на зажимах 356-357);

закрытие ограничителя открытия (и направляющего аппарата до полного);

срабатывание реле 9Р в конце процесса закрытия ограничителя открытия;

разворот лопастей рабочего колеса на пусковой угол.

При снижении напряжения с помощью ЛАТР на зажимах 208-209 до (50 - 60) В проверить отпадание якоря реле 10Р, 11P и переход лампы в режим подогрева. Стрелка балансного прибора должна установиться на 0, а выходной шток ЭГП переместиться в крайнее верхнее положение под действием сигнала в пусковой катушке.

В регуляторе ЭГР второй модификации проверку работы релейной части производить аналогичным образом.

Ж.6.2.10. При отключенных автоматах А502, А503 проверку работы реле Р101 контроля накала лампы Л101 произвести с помощью ЛАТР, подключенного на зажимы 513-514. При этом должен быть подтянут якорь реле Р405.

Для имитации работы агрегата ЛАТР включить на зажимы 428-430, а вольтметр - на зажимы 227-228.

Измеритель-преобразователь частоты (LC - контур) отключить на зажиме 107.

При включении автомата А501 должно сработать реле Р204.

Ж.6.2.11. Пуск имитировать замыканием зажимов 002-005. Проверить правильность и последовательность операций пуска:

срабатывание реле Р401;

отвод ограничителя открытия на пусковое открытие и отпадание якоря реле Р401 в конце процесса отвода ограничителя;

сворачивание лопастей рабочего колеса до комбинаторной зависимости;

открытие направляющего аппарата до пускового открытия.

При повышении напряжения с помощью ЛАТР на зажимах 428-430 до 110 В проверить напряжение срабатывания реле Р407 (85 - 90 В).

Управление двигателем МИО проверить ключом КУ.

Включение выключателя имитируют замыканием зажимов 203-210. При этом следует проверить:

срабатывание реле Р203, Р205;

отпадание якоря реле Р204 (подготовка схемы сгона МИО);

срабатывание реле Р401 и отвод ограничителя до полного открытия.

Ж.6.2.12. Действие автоматики при переводе агрегата в режим СК проверить при установке перемычки на зажимы 408-410.

Следует контролировать:

срабатывание реле Р406;

отклонение стрелки балансного прибора от 0 «на убавить»;

полное закрытие направляющего аппарата;

сворачивание лопастей рабочего колеса.

Ж.6.2.13. Для вывода из режима СК достаточно снять перемычку с зажимов 408-410.

Направляющий аппарат должен открыться до положения определяемого уставкой МИО (а лопасти развернуться на комбинаторную зависимость).

Ж.6.2.14. Проверку работы механизма управления агрегатом произвести воздействием на ключ КУ. Действие схемы слежения МИО за ограничителем открытия проверить при закрытии и открытии направляющего аппарата ограничителем.

Отключение выключателя имитируется снятием перемычки с зажимов 203-210. При этом должен произойти сгон МИО в положение холостого хода, сработать реле Р204, а направляющий аппарат закрываться до открытия холостого хода.

Ж.6.2.15. Остановку имитируют замыканием зажимов 007-064. Следует проверить срабатывание реле Р402, закрытие ограничителя открытия и направляющего аппарата до полного, разворот лопастей рабочего колеса на пусковой угол.

Ж.6.2.16. Проверку работы защиты от разгона 115 % следует производить при открытом до пускового открытия направляющем аппарате (после сигнала на пуск или открытом на ручном управлении). Перед испытаниями необходимо отключить обмотку тахогенератора. На зажимы 318-319 ЭГР первой модификации 037-038 ЭГР второй модификации подать напряжение переменного тока (от сети собственных нужд) через ЛАТР. На эти же зажимы подключить вольтметр. При повышении напряжения проверить уставку срабатывания реле 23Р (Р408) по вольтметру и электротахометру, работу золотника аварийного закрытия, полное закрытие направляющего аппарата.

Ж.6.2.17. При проверке релейной части ЭГРК-М (2М) для питания цепей переменного тока от сети собственных нужд на зажимы 053-054 в регуляторе ЭГР-М и зажимы 058-059 в регуляторе ЭГР-2М включить ЛАТР (зажимами «нагрузка»). Для установки и контроля напряжения на те же зажимы включить вольтметр.

Чтобы изменения частоты в сети не отражались на работе регулятора при испытаниях, следует отключить измеритель-преобразователь частоты (LC-контур): в регуляторе ЭГР-М снять штеккер 1К-11-12(в регуляторе ЭГР-2М разомкнуть цепь на зажиме 119). Непосредственно перед испытаниями включить автомат А002 и проверить напряжение постоянного тока (220 В) на зажимах 001-010.

Ж.6.2.18. Пуск имитируется кратковременным замыканием зажимов 071-073 в регуляторе ЭГР-М, 006-008 - в регуляторе ЭГР-2М. Проверить правильность и последовательность операций автоматического пуска:

срабатывание реле Р401 и Р402;

отвод ограничителя и открытие направляющего аппарата до пускового открытия;

наличие тока в катушке ЭГП «на прибавить» 1 - 1,5 деления по балансному прибору (в регуляторе ЭГР-2М после срабатывания реле Р405 в начале процесса отвода ограничителя);

сворачивание лопастей рабочего колеса (установку ролика на кулачок комбинатора);

отпадание якоря реле Р401 при окончании процесса отвода ограничителя на пусковое открытие.

Затем с помощью ЛАТР (при отключенном автомате A001 напряжение питания регулятора переменным током повысить до 110 В. Одновременно фиксировать напряжение срабатывания (85 - 90 В) реле включения электрической части регулятора (Р406 в ЭГР-М, Р407 в ЭГР-2М) и отпадание якоря реле Р405 в регуляторе ЭГР-2М. После работы этих реле должно происходить закрытие направляющего аппарата до открытия холостого хода (точнее - до установки МИО в ЭГР-М и МИЧ с МИМ в ЭГР-2М).

Включение выключателя генератора имитируют замыканием зажимов 408-410 в регуляторе ЭГР-М и 410-409 в регуляторе ЭГР-2М. При этом следует проверить:

срабатывание реле-повторителей выключателя Р202 и Р403 в регуляторе ЭГР-М, Р201 и Р403 в ЭГР-2М;

срабатывание реле переключения воздействия с МИЧ на МИМ Р202 (и отпадание якоря реле Р205 в схеме сгона МИМ в регуляторе ЭГР-2М);

работу реле Р401, Р402 и отвод ограничителя до полного открытия.

Ж.6.2.19. Проверку работы реле и механизмов управления агрегатом производят воздействием на ключ управления МИО в ЭГР-М или МИЧ - МИМ в ЭГР-2М. При этом следует проверить:

работу реле управления двигателя механизма (Р203, Р204) и срабатывание реле подготовки схемы сгона МИО Р405 в регуляторе ЭГР-М после отвода МИО из среднего положения;

скорость перемещения МИО или МИМ на открытие и закрытие направляющего аппарата. Действие схемы слежения МИО (МИМ) за ограничителем открытия проверить при закрытии и открытии направляющего аппарата ограничителя. При этом проверить работу реле Р204 и микропереключателя П705.

Ж.6.2.20. Для имитации работы регулятора ЭГР-М при переводе агрегата в режим СК необходимо установить перемычку на зажимы 208-224, разомкнуть зажим 006 (или 075), затем снять перемычку с зажимов 208-224. При этом проверить наличие на балансном приборе сигнала «на убавить», закрытие направляющего аппарата и разворот лопастей рабочего колеса на пусковой угол. Для имитации работы в режим СК регулятора ЭГР-2М необходимо установить перемычку на зажимы 410-415. Проверить срабатывание реле Р405, отклонение стрелки балансного прибора «на убавить», закрытие направляющего аппарата.

Ж.6.2.21. Остановку агрегата имитируют «оживлением» реле закрытия ограничителя открытия Р404 в ЭГР-М, Р406 в ЭГР-2М. Для этого требуется перемычку с зажимов 408-410 в ЭГР-М, 409-410 в ЭГР-2М перенести на зажимы 010-079 в ЭГР-М7 017-018 в ЭГР-2М.

В регуляторе ЭГР-М проверить работу реле Р404, концевого выключателя П703, скорость перемещения и закрытие направляющего аппарата до полного, установку стрелки указателя положения ограничителя на красной точке. При уменьшении значения напряжения питания регулятора переменным током фиксировать отпадание якоря реле Р405.

В регуляторе ЭГР-2М при подаче команды на остановку проверить работу реле Р406, концевого выключателя П703, закрытие направляющего аппарата до нуля и установку указателя ограничителя на красной точке, при снятии напряжения переменного тока - отпадание якоря реле Р407.

В регуляторах для поворотно-лопастных гидротурбин проверить установку лопастей рабочего колеса на пусковой угол при подходе стрелки ограничителя открытия к нулю по шкале указателя.

Ж.6.2.22. Проверку работы реле защиты 110 % (Р501) в регуляторе ЭГРК-2М следует производить при повышении напряжения питания регулятора переменным током. При этом должно действовать устройство программного закрытия направляющего аппарата до открытия холостого хода и разворота лопастей рабочего колеса на пусковой угол.

Проверку работы защиты от разгона 115 % следует производить при открытом до пускового открытия направляющем аппарате (после сигнала на пуск или открытом на ручном управлении). Перед испытаниями необходимо отключить обмотку тахогенератора на зажиме 043 в ЭГР-М, 056 в ЭГР-2М. На зажимы 041-044 в ЭГР-М, 054-055 в ЭГР-2М подать напряжение переменного тока (от сети собственных нужд) через ЛАТР. На эти же зажимы включить вольтметр. При повышении напряжения проверить уставку срабатывания реле Р407 в ЭГР-М, Р502 в ЭГР-2М по вольтметру и электротахометру, работу золотника аварийного закрытия, полное закрытие направляющего аппарата и разворот лопастей рабочего колеса на пусковой угол.

Ж.6.2.23. При проверке релейной части регулятора ЭГРК-1Т для питания цепей переменного тока от сети собственных нужд на зажимы 52-53 подать напряжение 220 В. Для питания цепей реле и электромагнитов оперативный постоянный ток подать на зажимы 61-60. Для питания цепей тахогенератора от сети собственных нужд при отключенном автомате А001 в гнезда 220 т.г. БПР включить ЛАТР (зажимами «нагрузка»). Для установки и контроля напряжения в гнезда 110 т.г. БПР (или на зажимы 47-48) включить вольтметр. На зажимы 702-745 установить перемычку, если в процессе пуска участвует электромагнит пуска ЕМ701.

Чтобы при испытаниях изменения частоты сети не отражались на работе регулятора, следует отключить измеритель частоты LC контур путем изъятия субблока СБ1 из блока ЧЧЭ.

Ж.6.2.24. Пуск следует имитировать кратковременным замыканием зажимов 100-102.

Проверить правильность и последовательность операций автоматического пуска:

срабатывание электромагнита пуска ЕМ-701;

срабатывание реле Р2 и Р27;

наличие тока в катушке ЭГП «на прибавить» 1 - 1,5 деления по балансному прибору (после срабатывания реле Р27);

отвод ограничителя и открытие направляющего аппарата до пускового открытия.

При размыкании зажима 757 и обесточивании электромагнита ЕМ706 происходит сворачивание лопастей рабочего колеса и установка ролика на кулачок комбинатора. (После проверки работы электромагнита ЕМ706 и гидроусилителей зажим 757 можно замкнуть, чтобы при дальнейших испытаниях лопасти рабочего колеса оставались развернутыми (при наличии в цепи электромагнита размыкающего контакта 3 - 4 реле оборотов РО - 50 %).

Работу электромагнита холостого хода ЕМ704 проверить при установке перемычки на зажимы 70-81 (или при снятии перемычки с зажимов 745-702 и установке ее на зажимы 745-705). При этом направляющий аппарат должен закрыться до открытия холостого хода. (Следует иметь в виду, что открытие холостого хода корректируется по напору автоматически, поэтому с изменением напора значение открытия холостого хода изменяется).

Затем с помощью ЛАТР (при отключенном автомате А001) напряжение питания регулятора переменным током повысить до 110 В. При этом фиксировать напряжение срабатывания (85 - 90 В) реле включения электрической части регулятора (Р21, Р31). После установки 110 В перемычку с зажимов 70-81 (745-705) снять. После этого открытие холостого хода определяется уставками МИЧ и МИМ. Проверить работу механизма управления агрегатом на холостом ходу (МИЧ) от ключа МИЧ-МИМ.

Имитировать включение генераторного выключателя замыканием зажимов 86-73.

При этом проверить:

срабатывание реле Р4 и отвод ограничителя до полного открытия;

срабатывание повторителя выключателя генератора P14 и реле переключения изодрома Р15, реле мертвой зоны Р16.

Ж.6.2.25. Проверку реле и механизмов управления агрегатом произвести воздействием на ключ управления МИЧ-МИМ. При этом проверить: действие МИМ, концевых выключателей МИМ «сверху» и «снизу», автоматическое переключение воздействия с МИМ на МИЧ.

Ж.6.2.26. Для имитации работы регулятора при переводе агрегата в режим СК необходимо на зажимы 86-69 и 86-75 установить перемычки.

При этом проверить:

срабатывание реле Р3;

сгон МИМ до ограничения «снизу» (и сгон МИЧ);

закрытие направляющего аппарата;

отпадание якоря реле Р3 при закрытии направляющего аппарата (размыкание контакта КНА-6) до открытия холостого хода;

срабатывание реле Р5;

закрытие ограничителя открытия и направляющего аппарата до полного;

установку на 0 стрелки балансного прибора ЭГП;

разворот лопастей рабочего колеса.

Ж.6.2.27. Действие фиксатора открытия направляющего аппарата проверить при открытом на 50 - 60 % направляющем аппарате и снижении напряжении от ЛАТР. Предварительно на зажимы 56-86 установить перемычку. При отпадании якоря реле Р21 и Р31 должен срабатывать электромагнит ЕМ705. От действия ограничителя направляющий аппарат должен закрываться ниже 50 - 60 % и открываться до 50 - 60 %. При восстановлении напряжения от ЛАТР до 110 В фиксатор должен оставаться в работе до снятия перемычки с зажимов 45-86 или до перевода рукоятки ЭГП из положения «автомат» в положение «ручное».

Ж.6.2.28. Остановку агрегата имитировать установкой перемычки на зажимы 86-122 и 86-69. При этом проверить:

срабатывание реле Р3;

сгон МИМ до ограничения «снизу» (и сгон МИЧ);

закрытие направляющего аппарата;

срабатывание реле Р2 и электромагнита остановки ЕМ701;

отпадание якоря реле Р3 при закрытии направляющего аппарата до открытия холостого хода (размыкание контакта КНА-6);

полное закрытие направляющего аппарата и ограничителя открытия (до красной точки по шкале указателя на гидромеханической колонке);

разворот лопастей рабочего колеса на пусковой угол.

Ж.6.2.29. Проверку работы реле защиты 110 % (Р23) произвести при повышении напряжения питания регулятора переменным током до 120 В. При срабатывании Р23 наблюдается срабатывание реле Р7, электромагнита программного закрытия ЕМ703, закрытие направляющего аппарата до открытия холостого хода.

Ж.6.2.30. Проверку работы защиты от разгона 115 % произвести при открытом до пускового открытия направляющем аппарата (после сигнала на пуск или открытом на ручном управлении). Перед испытаниями необходимо отключить обмотку тахогенератора на зажиме 43 (44), а в гнезда Г1, 72 блока защиты агрегата БЗА подать напряжение переменного тока (от сети собственных нужд) через ЛАТР. На эти же гнезда включить вольтметр. При повышении напряжения проверить уставку срабатывания реле по вольтметру и электротахометру, срабатывание золотника аварийного закрытия ЗАЗ, закрытие направляющего аппарата и разворот лопастей рабочего колеса на пусковой угол.

Ж.6.2.31. При проверке релейной части регулятора ЭГРК-2И-1 для питания электрической схемы регулятора, цепей реле и электромагнитов оперативный постоянный ток 220 В подать на зажимы 81-84 ряда зажимов шкафа регулятора. Для освещения шкал указателей напряжение переменного тока 220 В собственных нужд ГЭС подать на зажимы 123-126.

На зажимы 1-2, отключенные со стороны кабеля, включить выход генератора промышленной частоты, а на его выходе установить частоту ниже 45 Гц.

На зажимы 41-42 подать напряжение сети 100 - 120 В от измерительного трансформатора напряжения TU 7 4s 0. Переключатель «S» скольжение» поставить в положение «отключено».

Ж.6.2.32. Пуск имитировать установкой перемычки на зажимы 81-93. Проверить правильность и последовательность операций автоматического пуска:

отвод ограничителя открытия до полного по шкале на гидромеханической колонке:

открытие направляющего аппарата до пускового открытия, заданного в электрической схеме регулятора;

срабатывание электромагнита ЕМ-10 и сворачивание лопастей рабочего колеса (восстановление комбинаторной зависимости).

На выходе генератора промышленной частоты (ГПЧ) установить 50 Гц и контролировать закрытие направляющего аппарата до открытия холостого хода (до открытия, обусловленного положениями МИЧ и МИМ).

Проверить действие МИЧ воздействием на ключ SLC 7 0(МИЧ-МИМ). При изменении уставок изодрома холостого хода должно изменяться быстродействие регулятора. Действие схемы автоматической подгонки частоты вращения агрегата до синхронной с частотой сети проверить при включении переключателя S «скольжение». При этом при частоте на выходе ГПЧ на 0,5 Гц выше частоты сети направляющий аппарат должен закрываться под действием постоянного сигнала на ЭГП «убавить», а при частоте от ГПЧ на 0,5 Гц ниже частоты сети - открываться под действием неизменного сигнала на ЭГП «прибавить». После испытаний переключатель «S» отключить, на выходе ГПЧ установить 50 Гц, МИЧ установить в среднее положение.

Включение выключателя генератора имитировать установкой перемычки на зажимы 81-97 (перемычка с зажимов 81-93 может быть снята).

Ж.6.2.33. Правильность действия релейной автоматики следует проверять следующим образом:

автоматику переключения с МИЧ на МИМ и слежения МИМ за ограничителем - при воздействии на ключ SLC (МИЧ-МИМ) в сторону открытия, направляющего аппарата закрытием направляющего аппарата ограничителем открытия на 10 - 20 % от установленного МИМ значения и последующем отводе ограничителя открытия. При этом направляющий аппарат не должен открываться вслед за ограничителем открытия;

автоматику переключения с МИМ на МИЧ и с изодрома холостого хода на изодром нагрузки - рядом последующих действий.

С помощью ключа SLC при частоте на выходе ГПЧ 50 Гц направляющий аппарат открыть на 100 % (по указателю WG), а на балансном приборе ЭГП «S1» установить неизменный сигнал «на прибавить». При статизме Вр = 10 % частоту на выходе ГПЧ установить 53 - 55 Гц (направляющий аппарат должен закрыться).

При переключении уставок изодрома нагрузки быстродействие регулятора при действии на МИЧ через ключ SLC в сторону увеличения открытия направляющего аппарата должно изменяться.

Аналогичным образом проверить действие автоматики при закрытии направляющего аппарата от SLC и последующем уменьшении частоты от ГПЧ до 45 Гц. При этом быстродействие регулятора должно изменяться при переключении уставок изодрома нагрузки и действии на МИЧ через ключ SLC в сторону закрытия направляющего аппарата.

Ж.6.2.34. Для имитации работы регулятора при переводе агрегата в режим СК необходимо установить перемычки на зажимы 81-97 и 81-99 (после имитации пуска). Наблюдать закрытие направляющего аппарата от действия МИМ (МИЧ) до открытия холостого хода, а затем до полного под действием ограничителя открытия; установку на 0 стрелки балансного прибора (SI) при закрытии ограничителя до 0. Для приведения схемы автоматики в состояние готовности к другим операциям завершение режима СК (отжатие воды) имитировать установкой перемычки на зажимы 81-100.

Ж.6.2.35. В схеме автоматики поворотно-лопастных гидротурбин действие программного закрытия направляющего аппарата при сбросе нагрузки необходимо проверить при снятии перемычки с зажимов 81-97 (отключение выключателя) и установке перемычки на зажимы W51-W92 в гидромеханической колонке. Следует проверить срабатывание электромагнитов ЕМ11, ЕМ9, закрытие направляющего аппарата до открытия холостого хода и разворот лопастей рабочего колеса на пусковой угол.

Ж.6.2.36. Остановку агрегата следует имитировать установкой перемычки на зажимы 81-96 (после проверки операций пуска и включения в сеть).

При этом необходимо проверить:

закрытие направляющего аппарата под действием сигнала от МИМ (и МИЧ) до открытия холостого хода;

закрытие ограничителя открытия и установку стрелки на красной точке по шкале указателя;

полное закрытие направляющего аппарата;

срабатывание электромагнита ЕМ9 и разворот лопастей рабочего колеса на пусковой угол (после имитации отключения выключателя путем снятия перемычки с зажимов 81-97).

Ж.6.2.37. Проверку работы защиты 115 % произвести после завершения операций по пуску путем имитации работы реле защиты РЗА, например, от контакта реле РО 115 %.

Проверить:

срабатывание электромагнита и золотника аварийного закрытия;

закрытие направляющего аппарата до полного;

срабатывание электромагнита ЕМ9 и разворот лопастей рабочего колеса на пусковой угол.

Ж.6.3. Определение характеристик функциональных узлов

Ж.6.3.1. Характеристика измерителя частоты (ИЧ) или частоточувствительного элемента (ЧЧЭ) представляет собой зависимость значения выходного параметра от частоты поданного на вход ИЧ напряжения переменного тока. В зависимости от типа ЭГР для удобства измерения и пользования результатами испытаний характеристика узла снимается непосредственно с ИЧ (ЧЧЭ) или совместно с другими функциональными узлами.

Характеристика частоточувствительного элемента в электрогидравлическом регуляторе с усилителем на электронной лампе представляет собой зависимость разбаланса токов в катушке ЭГП от частоты напряжения тахогенератора (рис. 8). Характеристика снимается на агрегате, работающем на холостом ходу на ручном управлении.

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 8. Характеристика усилителя по входу частоты.

Перед снятием характеристики необходимо отключить все входы, кроме ЧЧЭ:

в регуляторе первой модификации сигнал от МИЧ на трансформаторе Т5 (зажимы 315-316), в регуляторе второй модификации - от МИО на трансформаторе Т103 (зажимы 111-112) установить равным нулю, а на зажимы поставить перемычку;

потенциометр статизма и переключатель интенсивности изодрома холостого хода установить на нуль. В плечи катушки ЭГП для измерения токов включить миллиамперметры I1 и I2 (зажимы 037 и 039 в ЭГР первой модификации, 050 и 052 в ЭГР второй модификации). Частоту измерять стрелочным частотомером Д506, включенным на напряжение тахогенератора.

С помощью ограничителя открытия частоту вращения агрегата следует изменять ступенями через 0,2 - 0,4 % в зоне от 49 до 51 Гц. На каждой ступени измерить установившуюся 0 частоту f напряжения тахогенератора и токи I1, I2 в плечах катушки ЭГП. Разбаланс определить по разности токов DI = I1 - I2. По полученным значениям построить характеристику, по которой определить коэффициент передачи узлов ЧЧЭ, ФЧВ и усилителя по частоте Kf = 8 - 9 мА/Гц, частоту резонанса LC контура 49,5 - 50,1 Гц (при DI = 0), линейность характеристики в зоне ±(0,6 - 0,8) Гц относительно точки резонанса. Частоту резонанса определяют при сравнении полученной характеристики с характеристикой ФЧВ и усилителя. Если последняя проходит через начало координат, то резонансную частоту определяют по пересечению полученной характеристики с осью абсцисс (ось частоты).

Ж.6.3.2. Характеристику частоточувствительного элемента в ЭГР-М (2М) определяют совместно с фазочувствительным выпрямителем (рис. 9). Входным параметром характеристики является частота, а выходным - ток в обмотках управления магнитного усилителя. Ток следует измерять в распайке резистора R119 микроамперметром, а частоту - частотомером, включенным в гнезда «частота» или на напряжение тахогенератора. Характеристику следует снимать на агрегате, работающем на холостом ходу на ручном управлении.

Перед снятием характеристики необходимо отключить все другие входы, кроме ЧЧЭ:

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 9. Характеристика МИЧ (МИО) и ЧЧЭ:

0 - среднее положение механизма; 1 - характеристика ЧЧЭ; 2 - характеристика МИЧ (МИО)

в регуляторе ЭГР-М снять штекеры 159-10, 1К15-16 и разомкнуть цепь на зажиме 222, а на зажимы 114-115 установить перемычку, в регуляторе ЭГР-2М разомкнуть цепь на зажимах 044 и 062;

потенциометр статизма установить на 0.

Методика получения характеристики аналогична изложенной в п. Ж.6.3.1. Характеристика должна быть без насыщения и линейна во всем диапазоне изменения частоты. Коэффициент передачи ЧЧЭ совместно с ФЧВ Kf = (11 - 12) мкА/Гц (ЭГР-М), Кf = (3 - 5) мкА/Гц (ЭГР-2М). Частоту резонанса LC контура определяют при сравнении полученной характеристики с характеристикой ФЧВ.

Ж.6.3.3. Характеристика частоточувствительного элемента в регуляторе ЭГР-1Т представляет собой зависимость напряжения на выходе блока ЧЧЭ (в гнездах Г1-Г3, Г1-Г2) от частоты питающего ЧЧЭ напряжения. Зависимость используют для определения работоспособности блока ЧЧЭ и для расчета параметров обратных связей интегратора БИУ.

Испытания следует проводить при работе агрегата на холостом ходу на ручном управлении, они также могут быть проведены на остановленном агрегате при питании регулятора от ГТЧ. В последнем случае на ряде зажимов регулятора необходимо отключить внешние провода на зажимах 115 и 116, а вместо них подключить выход ГТЧ. Питание регулятора от ГТЧ возможно не на всех модификациях ЭГР-IT, при выходной мощности ГТЧ не менее 50 Вт и возможности на выходе ГТЧ устанавливать напряжение 110 В. Отключить со стороны кабеля зажимы 41 и 42, на них подать через ЛАТР напряжение переменного тока, значение которого (110 В) контролировать на зажимах 47 и 49 или на гнездах Г1-Г4 блока питания регулятора БПР.

Перед проведением испытаний на работающем на холостом ходу агрегате необходимо провести следующие подготовительные операции:

провести управление на ручное;

отключить со стороны кабеля зажимы 115, 116 и соединить их со стороны цепей регулятора с зажимами 47, 48 или Г1-Г4 БПР для испытания ЧЧЭ-2;

изъять субблок СБ-2 блока ЧЧЭ-2 при испытаниях ЧЧЭ-1, блока ЧЧЭ-1 при испытаниях ЧЧЭ-2;

включить стрелочный частотомер на напряжение тахогенератора, в гнезда Г1-Г2 (ЧЧЭ-1), Г1-Г3 (ЧЧЭ-2) включить вольтметр (при испытаниях от ГТЧ рекомендуется использовать цифровой частотомер).

Испытания следует проводить по методике, аналогичной приведенной в п. 6.3.1. Характеристики ЧЧЭ должны быть линейными во всем диапазоне изменения частоты. Частоту резонанса (0 на выходе ЧЧЭ) настраивают на 50 Гц регулированием резистора R4 в СБ-5 блока ЧЧЭ. Полярность сигнала выхода ЧЧЭ-1 должна быть обратной полярности сигнала выхода ЧЧЭ-2.

Коэффициент передачи блока ЧЧЭ должен быть около 1,5 В/Гц (на Г1-Г2).

Ж.6.3.4. Характеристика измерителя частоты ИПЧ в регуляторе ЭГР-2И-1 представляет собой зависимость напряжения выхода субблока Н6 (Н8) от частоты напряжения на входе.

Характеристика может быть получена как на работающем на ручном управлении, так и на остановленном агрегате при включенном питании регулятора. На отключенные со стороны кабеля зажимы 1-2 (для снятия характеристики ИЧ-1) или 41-42 (ИЧ-2) включить выход ГТЧ мощностью не менее 10 Вт. Напряжение выхода ИЧ измерять на контрольных гнездах субблока. Характеристика должна быть линейной в пределах ±10 В выходного напряжения. Коэффициент передачи ИЧ Kf = 1,5 - 2 В/Гц регулируют резистором R1, а смещение характеристики в начало координат - резистором R3 (грубо) и R2 (точно).

Ж.6.3.5. Характеристика механизма изменения частоты в электрогидравлическом регуляторе с усилителем на электронной лампе представляет собой зависимость разбаланса токов в катушке ЭГП от напряжения на первичной обмотке трансформатора Т5 (Т103 для ЭГР второй модификации). Характеристика может быть получена на работающем на ручном управлении или на остановленном агрегате при питании цепей регулятора напряжением переменного тока от схемы собственных нужд.

Перед снятием характеристики необходимо отключить все другие входы:

ЧЧЭ в ЭГР первой модификации отключить на зажиме 432, в ЭГР второй модификации на зажиме 107; потенциометр статизма, переключатели интенсивности и времени изодромов холостого хода и нагрузки установить на 0. В плечи катушки ЭГП включить миллиамперметры, а на зажимы 315-316 (первичная обмотка трансформатора Т5), в ЭГР второй модификации на зажимы 111-112 Т103 включить вольтметр.

Характеристику МИЧ (МИО) получают совместно с ФЧВ и усилителем.

Напряжение на Т5 (Т103) следует менять изменением положения движка резистора R502 (R201) вручную или при воздействии на двигатель от ключа управления МИЧ (МИО).

Характеристика должна быть линейной в пределах 4 - 5 мА по току разбаланса, коэффициент передачи К МИЧ должен быть равен (1 ± 0,1) мА/В для ЭГР первой модификации и К МИО = (1,15 ± 0,05) мА/В для ЭГР второй модификации.

Пределы действия механизма устанавливают непосредственно при работе агрегата на холостом ходу или пересчитывают по измерениям напряжения в крайних положениях механизма. Диапазон действия следует определять по формуле

(8)

где U - напряжение в крайнем положении механизма.

Ж.6.3.6. В электрогидравлических регуляторах ЭГР-М и ЭГР-2М характеристика МИО (МИЧ) представляет собой зависимость тока в обмотках управления первого каскада магнитного усилителя от напряжения на первичной обмотке трансформатора Т103 в ЭГР-М (Т102 в ЭГР-2М). Испытания могут быть проведены на работающем на ручном управлении или на остановленном агрегате при питании цепей регулятора напряжением переменного тока от схемы собственных нужд.

Для снятия характеристики миллиамперметр следует включить в распайку резистора R119, на зажимы 114-115 (в ЭГР-М), 112-113 (в ЭГР-2М) включить вольтметр. Потенциометр статизма, переключатели интенсивности и времени изодромов холостого хода и нагрузки установить на 0. Характеристику МИЧ (МИО) получают совместно с ФЧВ во всем диапазоне действия механизма.

По результатам испытаний следует построить зависимость тока в цепи R119 от напряжения на трансформаторе. Характеристика должна быть линейной во всем диапазоне действия механизма. По характеристике определить диапазон действия механизма и коэффициент передачи К МИО = 1,5 - 1,6 мкА/В (в ЭГР-М), К МИЧ = 0,5 - 0,6 мкА/В (в ЭГР-2М). Необходимо проверить и настроить «среднее» положение механизма.

В регуляторе ЭГР-М «среднее» положение МИО характеризуется тем, что движок резистора R201 находится в среднем для него положении (здесь же должно происходить срабатывание переключателя П207), рукоятка - на отметке 0, а с помощью R222 на трансформаторе установлено такое напряжение, чтобы ток в цепи R119 был равен току от ЧЧЭ при 50 Гц (см. рис. 3.9), но имел противоположный знак. Значение этого тока определяется по характеристике ЧЧЭ. В регуляторе ЭГР-2М «среднее» положение МИЧ характеризуется тем, что в этом положении на сельсине МИЧ (зажимы 060-061) напряжение равно нулю, рукоятка МИЧ находится в среднем (от упоров) положении, а с помощью резисторов R273 и R274 на трансформаторе установлено такое напряжение, что создается такое же соотношение значений, как и в предыдущем случае.

Ж.6.3.7. Характеристику механизма изменения частоты в регуляторе ЭГР-1Т снимают для определения правильности настройки узла и диапазоне действия. Контрольная характеристика МИЧ представляет собой зависимость напряжения на контрольных гнездах Г1, Г3 блока ВВС от положения механизма. Диапазон действия МИЧ по частоте может быть определен непосредственно по значениям частоты в крайних положениях механизма при испытаниях на холостом ходу или рассчитан по известным коэффициентам передачи БИУ по входам от МИЧ и ЧЧЭ.

Контрольная характеристика может быть снята на работающем на ручном управлении или остановленном агрегате с питанием регулятора от постороннего источника. Перед проведением испытаний следует выполнить следующие операции:

изъять из блока ВВС субблок СБ-4 (при проведении испытаний на работающем в сети агрегате), т.е. перевести управление на МИЧ;

включить вольтметр на контрольные гнезда Г1, Г3 блока ВВС.

Воздействием на ключ управления «МИЧ-МИМ» положение МИЧ изменить во всем диапазоне действия ступенями через 2 В.

На каждой ступени измерить напряжение в контрольных гнездах Г1, Г3 блока ВВС.

По результатам испытаний определяют правильность настройки механизма и диапазон действия. Входное напряжение на Г1, Г3 должно быть в пределах DU ± 14 В и проходить через 0 в середине диапазона действия МИЧ. Смещение характеристики в начало координат следует производить поворотом статора сельсина МИЧ в обойме. Диапазон действия определяют по формуле

(9)

где - коэффициент передачи блока БИУ по входу от МИЧ;

- коэффициент передачи БИУ по входу от ЧЧЭ;

Кf - коэффициент передачи блока ЧЧЭ, В/Гц.

Ж.6.3.8. Характеристику МИЧ в регуляторе ЭГР-2И-1 снимают для определения диапазона и правильности действия узла. Характеристика может быть снята как на работающем, так и на остановленном агрегате. На работающем в сети на ручном управлении агрегате следует установить переключатель статизма «Вр» на 0, чтобы перевести управление на МИЧ. Выходное напряжение субблока Н5 измерять в контрольном гнезде X1 блока Н. Диапазон действия ±10 В проверить при воздействии на ключ SLC в сторону «прибавить» и «убавить». Симметричность диапазона следует проверить по равенству времени изменения выходного сигнала от 0 до +10 или -10 В при непрерывном сигнале управления от ключа. Время интегрирования сигнала на «прибавить» и «убавить» регулируют резистором R4 в субблоке Н5.

Стабильность характеристики МИЧ следует проверять по неизменности выходного напряжения (не более 0,2 В) в течение суток.

Ж.6.3.9. В регуляторе ЭГР первой и второй модификаций характеристику усилителя электрических сигналов снимают совместно с фазочувствительным выпрямителем по различным входам. Характеристика представляет собой зависимость разбаланса токов в катушке ЭГП от напряжения на первичной обмотке трансформатора испытуемого входа (рис. 10).

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 10. Характеристика усилителя по входу на Т4:

1 - действительная характеристика; 2 - граница зоны действительных точек; 3 - недействительные точки

По полученной характеристике можно судить об исправности фазочувствительного выпрямителя, лампы и определить коэффициенты усиления по различным входам. Например, коэффициент усиления по входу Т4 составляет 0,9 мА/В, по входу Т5 - 1,1 мА/В. В ЭГР второй модификации коэффициент передачи по входу Т102 составляет 0,57 мА/В, по входу Т103 - 1,15 мА/В.

При замене электронной лампы достаточно получить характеристику усилителя по одному из входов и пропорционально вновь полученному значению коэффициента усиления пересчитать значения коэффициентов передачи по остальным входам.

Ж.6.3.10. В регуляторах ЭГР-М и ЭГР-2М характеристику магнитного усилителя (МУ) необходимо снимать при тех же условиях, что и характеристику МИЧ (или ФЧВ). При этом дополнительно на выход усилителя (в катушку ЭГП) следует включить миллиамперметр (с внутренним сопротивлением не более 5 Ом): в ЭГР-М - в рассечку зажима 018, в ЭГР-2М - зажима 043.

Перед снятием характеристики МУ рекомендуется проверить правильность настройки смещения характеристик дросселей в каскадах усилителя. Смещение в каскадах проверять следующим образом. При закороченных выходных зажимах МУ (102-117 в ЭГР-М и 102-101 в ЭГР-2М) измерить напряжение на R112, R113 в ЭГР-М и R101, R102 в ЭГР-2М при нулевом значении тока в обмотках управления по основному входу (в цепи R119). При необходимости смещением установить одинаковые напряжения. Затем на этих резисторах (и, следовательно, при нулевом значении тока в обмотках управления второго каскада МУ) снять закоротку с выходных зажимов и проверить равенство напряжений на R116, R117 в ЭГР-Мт и R107, R108 в ЭГР-2М. При правильной настройке ток в катушке ЭГП при этих условиях должен быть равен нулю.

Характеристику МУ по основному входу следует снимать следующим образом.

При изменении уставки МИО (МИЧ) необходимо фиксировать установившиеся значения токов на входе МУ по микроамперметру, включенному в распайку резистора R119, и на выходе МУ по миллиамперметру, включенному в катушку ЭГП.

По полученным результатам построить зависимость выходного тока от входного. По характеристике определить коэффициент передачи усилителя по основному входу, зону линейности характеристики и правильность установки смещения в каскадах. При правильно выбранном смещении характеристика МУ должна проходить через начало координат, а зоны линейности должны быть практически одинаковыми по обе стороны осей координат. Коэффициент усиления МУ в ЭГР-М должен быть 2500 - 3000, а в ЭГР-2М - около 10000.

Ж.6.3.11. В регуляторе ЭГР-1Т необходимо снять характеристики усилителей в блоках БИУ и ГСС. Для наладки используется статическая характеристика БИУ как инерционного звена (а не интегратора), поэтому коэффициент передачи усилителя определяют при определенном положении движка резистора R1 «статизм». По характеристике можно определить одновременно исправность сумматора СБ-11, модулятора СБ-2, усилителя УПД-2-0,3 демодулятора СБ-3 и фильтра на выходе БИУ до гнезд Г1, Г2. Перед проведением испытаний следует выполнить подготовительные операции:

перевести управление агрегатом на ручное при снятии характеристики на работающем агрегате. При проведении испытаний на остановленном агрегате подать питание на регулятор от постороннего источника. Для этого зажимы 41 и 42 отключить со стороны кабеля, на зажимы 41 и 42 в электрическую схему регулятора подать напряжение через ЛАТР и установить 110 В на зажимах 47, 48, на зажимы 73, 61 поставить перемычку;

установить рукоятку «статизм» движка резистора R1 в положение «10»;

установить переключатели интенсивности и времени изодромов в положение «0»;

установить переключатель П2 «подгонка частоты» в положение «отключено»;

поставить перемычку на гнезда Г1, Г3 ЧЧЭ;

изъять из БВВС субблок СБ-4 (при проведении испытаний на работающем в сети агрегате), т.е. перевести управление на МИЧ;

поставить закоротку на гнезда Г1, Г3 БВВС;

включить вольтметр на гнезда Г1, Г2 БИУ;

установить «0» БИУ. Установку «0» произвести потенциометром «настройка» на задней части панели блока. Корректировку «0» можно производить переменным резистором R29 в субблоке СБ11 блока БИУ. Установку «0» БИУ следует производить при частоте 50 Гц или близкой к ней;

снять закоротку с Г1, Г3 БВВС после установки «0» БИУ, а в гнезда включить вольтметр.

Характеристика представляет собой зависимость выходного напряжения блока от напряжения на входе. Входной сигнал следует изменять в пределах диапазона действия МИЧ и измерять по вольтметру, включенному в гнезда Г1, Г3 блока БВВС. Характеристика должна быть линейной в пределах ±60 В выходного и ±14 В входного сигналов. Коэффициент передачи по входу от МИЧ КБИУмич = 5, по входу от ЧЧЭ КБИУх = 10 (при Вр = 10 %). Для определения КБИУх используется методика п. 6.3.3.

Необходимо характеристику усилителя ГСС (СБ-20) по различным входам снять для определения исправности усилителя, работающего совместно с входным сумматором (СБ-11) и модулятором-демодулятором (СБ22), а также для градуировки сигналов по входам от БИУ, МИМ, Сс701.

При снятии характеристики по одному из входов все другие входы должны быть отключены. Характеристика представляет собой зависимость тока в катушке ЭГП от напряжения входного сигнала. Перед снятием характеристики следует проверить и при необходимости установить «0» усилителя ГСС. Для этого:

перевести управление работающим агрегатом на ручное (при проведении испытаний на остановленном агрегате подать питание на регулятор от постоянного источника);

изъять блок ГСС из стойки регулятора и двумя ремонтными жгутами подключить к штепсельным разъемам;

установить перемычку на выводы Г1, Г3 блока ЧЧЭ, переключатель «подгонка частоты» установить в положение «отключено»;

изъять субблок СБ-4 из блока ВВС (при проведении испытаний на работающем в сети агрегате), т.е. перевести управление на МИЧ;

установить с помощью МИЧ «0» напряжения на выходе БИУ по вольтметру, включенному в гнезда Г1, Г2;

выставить МИМ в среднее положение (установить «0» на гнездах Г2, Г3 блока ВВС), после чего на гнезда поставить закоротку;

поставить перемычку на гнезда Г2 - Г4 блока ГСС (предварительно отключить датчик открытия направляющего аппарата на зажиме 6 ряда зажимов регулятора);

включить миллиамперметр в разрыв зажима 84 (на выход ГСС в обмотку катушки ЭГП).

При нормальной балансировке выход блока ГСС (ток ЭГП) должен быть равен 0. При нарушении баланса ГСС необходимо изъять субблок СБ-22 и с помощью ремонтного жгута подключить его к основному блоку. С помощью резистора R3 установить «0» выхода блока.

Характеристику необходимо снять в диапазоне 7 ? 060 мА тока в катушке ЭГП при воздействии на МИЧ. В измеряемом диапазоне характеристика должна быть линейной, коэффициент передачи схемы по входам составлять: КГССБИУ = (6 - 7) мА/В, КГССв = (4 - 5) мА/ %, КГССМИМ = (18 ± 0,5) мА/В.

Ж.6.3.12. В регуляторе ЭГР-2И-1 снимают характеристики усилителей: интегрирующего в субблоке Н3 и выходного следящей системы в субблоке Н9. Характеристики усилителей могут быть сняты как на остановленном, так и на работающем агрегате.

Для наладки используется статическая характеристика интегрирующего усилителя в субблоке Н3 как инерционного звена (а не интегратора), поэтому коэффициент передачи усилителя определяют при определенном положении переключателя статизма «Вр». По характеристике можно определить исправность микросхем А2 и А4 с корректирующими цепями. Перед проведением испытаний следует выполнить следующие подготовительные операции:

перевести на работающем в сети агрегате управление от ключа SLC на МИЧ - разомкнуть зажим 61 (или 62) регулятора;

изъять субблок Н4;

установить переключатель статизма «Вр» в положение «10»;

поставить переключатели S «скольжение», fd «мертвая зона» и Кр в положение «отключено»;

установить на 0 переключатели интенсивности и времени изодромов холостого хода и нагрузки «Тп производная»;

включить вольтметры в контрольные гнезда блока Н и субблока Н3 на выход усилителя;

поставить закоротку на контрольные гнезда на выходе субблока Н6;

поставить на точки 14 и 3 платы субблока Н5 - съемную перемычку (отключить сигнал от МИМ).

Характеристика представляет собой зависимость напряжения на выходе субблока Н3 от напряжения на контрольном гнезде X1. Характеристика, снятая во всем диапазоне действия МИЧ, должна быть линейной в диапазоне ±10 В выходного сигнала, проходить через 0 в середине диапазоне, коэффициент передачи должен быть равен 2.

Характеристику усилителя следящей системы субблока Н9 снимают для определения исправности субблока и градуировки сигналов по входам.

Характеристика представляет собой зависимость тока в катушке ЭГП (выход усилителя) от напряжения на входе. При снятии характеристики по одному из входов все другие входы должны быть отключены. Перед снятием характеристики по входу от регулятора частоты при проведении испытаний на остановленном агрегате в дополнение к вышеперечисленным операциям разомкнуть зажим 053 (включить вход на Н9), изъять субблок Н4 (отключить обратную связь). Характеристика усилителя следящей системы Н9 снимается воздействием на интегрирующий усилитель через МИЧ по указанной выше методике. Выходной сигнал усилителя (ток в катушке ЭГП) следует измерять в разрыве зажима 50, напряжение на входе - в контрольных гнездах субблока Н3.

Характеристика должна быть линейной в диапазоне ±60 мА тока в катушке ЭГП, коэффициент передачи Ку равен расчетному значению завода-изготовителя (2160413 ТО).

Ж.6.3.13. Характеристику фазочувствительного выпрямителя как отдельного функционального узла снимают в регуляторах с магнитным усилителем (ЭГР-М и ЭГР-2М). В остальных типах регуляторов характеристику ФЧВ получают совместно с другими функциональными узлами (с усилителем, ЧЧЭ и т.д.) ввиду конструктивных особенностей регуляторов.

Характеристика ФЧВ можно снять как на работающем в сети агрегате на ручном управлении, так и на остановленном агрегате (в этом случае питание электрической схемы регулятора осуществляется от постороннего источника).

Для снятия характеристики следует отключить ЧЧЭ - в регуляторе ЭГР-М снять штекер 1К 11-12, в регуляторе ЭГР-2М разомкнуть зажим 119. Отключить обратные связи: в регуляторе ЭГР-М снять штекеры 1К 9-10, 1К 15-16, в регуляторе ЭГР-2М разомкнуть зажим 044 (или 045). Потенциометр статизма установить на 0. На выводы 1-3 трансформатора Т104 подключить вольтметр (с большим внутренним сопротивлением), в распайку R119 включить миллиамперметр.

При изменении уставки МИО (МИЧ) измерить напряжение на Т104 и ток в R119. По полученным результатам построить зависимость тока от напряжения. Характеристика должна быть линейной и проходить через начало координат (допускается некоторое смещение характеристики от начала координат). Коэффициент передачи ФЧВ составляет 7 - 8 мкА/В в ЭГР-М и 2 - 3 мкА/В в ЭГР-2М.

Ж.6.3.14. Механизм изменения мощности входит во все схемы электрогидравлических регуляторов, кроме ЭГР второй модификации и ЭГР-М.

В ЭГР с ламповым усилителем характеристику механизма изменения мощности МИМ снимают для определения диапазона действия механизма и коэффициента передачи по входу на усилитель через трансформатор Т4. Коэффициент передачи от потенциометра МИМ (R501) к трансформатор Т4 зависит от уставки потенциометра статизма r35, поэтому для определенности характеристику МИМ снимают на уставке статизма «10».

Характеристику можно снимать на работающем в сети на ручном управлении агрегате или на остановленном с опорожненной спиральной камерой при открытии направляющего аппарата на 50 %. В этом случае фаза напряжения, измеренного на Т4, изменяется в середине диапазоне действия МИМ. Диапазон действия МИМ, пересчитанный к входу по частоте, должен составлять ±10 % изменения частоты при статизме Вр = 10 %. Коэффициент передачи усилителя по ходу от Т4 К = (0,9 ± 0,1) мА/В. Методика снятия характеристики МИМ и усилителя аналогична. При снятии характеристики отключить ЧЧЭ на зажиме 432, МИЧ установить в среднее положение (О В на зажимах 315-316), а на зажимы 315-316 установить закоротку. Для общности с методикой снятия характеристики по входу от обратной связи переключатели изодромов могут быть установлены на 0.

Ж.6.3.15. В регуляторе ЭГР-1Т характеристику МИМ необходимо снимать для определения правильности настройки узла. Характеристику можно снимать как на работающем на ручном управлении агрегате, так и на остановленном при питании электрической схемы регулятора от постороннего источника. Для снятия характеристики управления перевести на МИМ, шторки ограничителей на указателе положения МИМ следует отвести в крайние положения. Характеристика представляет собой зависимость напряжения в гнездах 12-13 блока ВСС от положения механизма. Характеристика должна быть линейной в диапазоне действия механизма и проходить через 0 в середине диапазона; напряжение, измеренное в крайних положениях, должно быть 14 В, а указатель находиться в диапазоне 0 - 100 % (регулируется резистором R2 в субблоке СБ12 блока ВСС).

Ж.6.3.16. В регулятор ЭГР-2М характеристика механизма изменения мощности может быть снята как на работающем в сети на ручном управлении, так и на остановленном агрегате (питание электрической схемы регулятора осуществляется от сети собственных нужд).

Перед проведением испытаний необходимо отключить ЧЧЭ (разомкнуть зажим 119), потенциометр статизма установить на деление 10, отключить МИЧ (разомкнуть зажим 314, а на зажимы 112-113 поставить закоротку). Провод на С1 (С2) сельсина-датчика открытия направляющего аппарата С701 отключить на зажиме 744 (750) или на выводах сельсина. Для общности с методикой снятия характеристики по входу от обратной связи переключатели изодромов могут быть установлены на 0. В распайку резистора R119 включить микроамперметр, а на зажимы 044-045 - вольтметр.

Характеристику снять при перемещении рукоятки механизма во всем диапазоне действия МИМ. По результатам испытаний построить зависимость тока в цепи R119 от напряжения на зажимах 044-045.

По характеристике определить коэффициент передачи схемы КМИМ = 0,2 - 0,3 мкА/В, диапазон действия механизма (±10 % в пересчете на частоту) и выставить среднее от упоров положение механизма при нулевом значении тока в цепи R119 поворотом статора сельсина в обойме.

Ж.6.3.17. Характеристику МИМ в регуляторе ЭГР-2И-1 снимают для определения правильности действия узла и исправности элементов электрической схемы.

Характеристику МИМ снимают совместно с усилителем в субблоке Н3. Характеристика может быть снята как на работающем в сети на ручном управлении агрегате, так и на остановленном при переведении управления от ключа SLC на МИМ.

Перед снятием характеристики следует отключить ИПЧ путем установки закоротки на контрольных гнездах субблока Н6 и МИЧ - установкой закоротки между контрольным гнездом X1 блока Н и общей точкой схемы. Переключатели интенсивности и времени изодромов установить на 0, переключатель статизма «Вр» - на деление 10. Правильность действия МИМ следует проверить по равенству напряжений, измеренных в контрольных гнездах субблока Н3 (на выходе усилителе) на краю диапазона действия МИМ. Напряжение должно составлять ±10 В и изменять знак в середине диапазона, которая устанавливается регулированием (резистором R5) времени изменения напряжения от 0 до +10 В и от 0 до -10 В при непрерывном воздействии на ключ SLC в сторону «прибавить» и «убавить». При правильной настройке МИМ это время должно быть одинаковым.

Качество хранения информации (стабильность МИМ) необходимо проверить по неизменности выходного напряжения (не более 0,2 В) в течение суток.

Ж.6.3.18. Характеристика обратной связи и градуировка датчика положения регулирующего органа в регуляторах ЭГР с ламповым усилителем представляет собой зависимость напряжения на первичной обмотке трансформатора схемы сумматора до открытия направляющего аппарата (хода сервомотора). Для определенности характеристику снимают при уставке потенциометра статизма 10 дел. В регуляторе ЭГР первой модификации МИМ необходимо установить в положение холостого хода, которое определяется тем, что при открытии холостого хода напряжение на Т4 равно нулю при всех положениях движка потенциометра статизма.

Характеристику следует снимать при изменении открытия направляющего аппарата ограничителем от 0 до максимального ступенями через 5 - 10 %. Открытие направляющего аппарата измерять по ходу штока сервомотора (или регулирующего кольца) линейкой с ценой деления 1 мм. Напряжение на Т4 - на зажимах 311, 313.

Для определения мертвой зоны в обратной связи характеристику необходимо снимать при прямом и обратном ходе.

Ж.6.3.19. В регуляторах ЭГР второй модификации характеристику обратной связи снимают аналогичным образом на трансформаторе Т102 (зажимы 119-120). Движок резистора R203 должен быть установлен так, чтобы при открытии холостого хода напряжение на зажимах 119-120 было равно нулю при всех положениях потенциометра статизма. Коэффициент передачи должен быть Kв = 0,8 - 0,9 В/%. Мертвая зона в тросовой обратной связи jy не более 0,4 % от полного хода регулирующего органа.

Аналогичным образом должна сниматься характеристика по входу на изодром на трансформаторах Т1 в ЭГР первой модификации и Т201 в ЭГР второй модификации.

Данные этих испытаний следует использовать для градуировки переключателей статизма и интенсивности изодромов.

Для более точного определения мертвой зоны в обратной связи в какой-либо зоне открытий направляющего аппарата следует до начала испытаний отключить ЧЧЭ и изодром, затем на автоматическом управлении с помощью МИО или МИМ установить открытие направляющего аппарата на краю этой зоны. Подведя ограничитель открытия, перевести управление агрегатом на «ручное» и снять характеристики для прямого и обратного хода в этой зоне по приведенной выше методике, не отключая МИО (МИМ).

Ж.6.3.20. В регуляторе ЭГР-2М для снятия характеристики следует произвести следующие подготовительные операции:

отключить ЧЧЭ (разомкнуть зажим 119);

отключить МИЧ (рукоятку МИЧ поставить в среднее положение, а на зажимы 112-113 подключить перемычку;

отключить изодром установкой переключателей на 0;

установить потенциометр статизма на деление 10;

отключить провод к C1 (C2) МИМ на зажиме 744 (или 750);

включить вольтметр в распайку резистора R119, а на зажимы 044-045 - вольтметр.

Методика снятия характеристики аналогична приведенной выше. По полученным результатам построить зависимости:

напряжения от перемещения штока сервомотора или регулирующего кольца (достаточно для одного хода). По этой характеристике определить коэффициент передачи узла в В/%, произвести градуировку датчика открытия направляющего аппарата и выставить среднее положение С701 при 50 % открытия;

тока от хода штока сервомотора или регулирующего кольца (прямой и обратный ход).

По этой характеристике определить коэффициент передачи обратной связи в мкА/% и мертвую зону в обратной связи jy %.

В регуляторе ЭГР-М для снятия характеристики обратной связи произвести следующие подготовительные операции:

отключить ЧЧЭ и изодром (снять штеккеры 1К9-10, 1К11-12, 1К15-16), потенциометр статизма установить на деление 10;

включить микроамперметр в распайку резистора R119, а на зажимы 108-219 (108-216, 108-312 - в зависимости от того, градуировка какого датчика производится) включить вольтметр;

поставить в среднее положение рукоятку МИО, а зажимы 114-115 закоротить. Методика проведения испытаний аналогична приведенной выше. По результатам испытаний определяют аналогичные параметры обратной связи и производят настройку резисторов R122, R701 (при открытии холостого хода ток в цепи R119 должен быть равен нулю при любых положениях движка потенциометра статизма).

Ж.6.3.21. В регуляторах ЭГР-1Т и ЭГР-2И-1 характеристику обратной связи по положению регулирующего органа в следящей системе снимают для определения исправности узла. Определение мертвой зоны в передаче при устойчивой работе следящей системы можно не производить.

Характеристика в регуляторе ЭГР-1Т представляет собой зависимость напряжения на зажимах Г2-Г4 блока ГСС от хода регулирующего органа, а в регуляторе ЭГР-2И-1 - напряжения в гнездах субблока Н4 от хода регулирующего органа или от мощности агрегата. Последняя может быть получена только при работе агрегата в сети.

При проведении испытаний другие входы на следящую систему могут не отключаться. Методика снятия характеристики аналогична приведенной выше. Коэффициент передачи, определенный по характеристике в регуляторе ЭГР-1Т, должен быть Кв = 0,4 В/%, а в регуляторе ЭГР-2И-1 Кв = 0,2 В/% открытия или мощности.

Ж.6.3.22. Во всех типах электрогидравлических регуляторов в качестве стабилизирующих элементов применяются жесткая обратная связь по положению регулирующего органа (по выходу регулятора частоты в ЭГР-1T и ЭГР-2И-1), создающая остающуюся неравномерность (статизм) регулятора, и гибкая изодромная обратная связь, создающая временную неравномерность. Проверка правильности действия узлов заключается в градуировке переключателей статизма, интенсивности и времени изодрома. Статизм и интенсивность изодрома рассчитывают по зависимости, содержащей коэффициенты передачи узлов: измерителя преобразователя частоты (ЧЧЭ), обратной связи, связывающих узлов и коэффициента передачи испытуемого узла.

Интенсивность изодрома определяют, как правило, при закороченном конденсаторе RC-цепи. Переходная характеристика электрического изодрома практически не отличается от экспоненты, поэтому в отличие от механического изодромного устройства (катаракта) снимать его переходную характеристику не обязательно. Постоянную времени изодрома определяют по известному свойству экспоненциальности кривой.

В ЭГР с ламповым усилителем градуировку переключателей статизма и интенсивности изодрома производят по измерению разбаланса токов в обмотках катушки ЭГП на выходе усилителя и пересчитывают на вход от частоточувствительного элемента.

Для градуировки переключателя интенсивности изодрома холостого хода на работающем в сети агрегате (на ручном управлении) необходимо имитировать отключение выключателя (замкнуть зажим 094 в ЭГР первой модификации, зажим 230 в ЭГР второй модификации). При градуировке переключателей интенсивности изодрома нагрузки на работающем на холостом ходу (на ручном управлении) или на остановленном агрегате необходимо имитировать включение выключателя (установить перемычку на зажимы 094-095 в ЭГР первой модификации, на зажимы 058-060 в ЭГР второй модификации).

Для отключения ЧЧЭ разомкнуть зажим 412 в ЭГР первой модификации, зажим 107 в ЭГР второй модификации. Потенциометр статизма установить на 0, а с помощью МИЧ (МИО) установить баланс токов в обмотках катушки ЭГП по миллиамперметрам, включенным на выход усилителя при отключенном входе изодрома (при разомкнутом зажиме 420 в ЭГР первой модификации, 220 в ЭГР второй модификации). На вход изодрома (зажимы 419-420, 227-220) подать напряжение такого значения, чтобы разбаланс токов был в линейной зоне характеристики усилителя при максимальной уставке переключателя интенсивности изодрома. Разбаланс токов необходимо определять на каждой уставке переключателя, а интенсивность рассчитывать из выражения

(10)

где DI - разбаланс токов на уставке, мА;

Kb - коэффициент передачи обратной связи (датчика открытия R702), В/%;

Kf - коэффициент передачи усилителя с ЧЧЭ, мА/%;

U - напряжение на входе изодрома, В.

Градуировку потенциометра статизма следует производить аналогичным образом.

Переключатели интенсивности изодрома установить на О. Разбаланс токов в обмотках катушки ЭГП измерять на каждой уставке потенциометра статизма. При этом напряжение на потенциометр статизма подавать такого значения, чтобы разбаланс токов был в линейной зоне характеристики усилителя. Статизм «Вр» определяют по приведенной выше зависимости, где Кв - коэффициент передачи датчика открытия R705 в ЭГР первой, R701 - в ЭГР второй модификации.

Ж.6.3.23. В ЭГР с магнитным усилителем градуировку потенциометра статизма следует производить по току управления усилителя в цепи R119. Испытания могут быть проведены по приведенной выше методике с предварительной градуировкой датчика открытия направляющего аппарата и могут быть проведены по приведенной ниже методике при непосредственном изменении открытия направляющего аппарата. Для проведения испытаний необходимо отключить ЧЧЭ (снять штеккер 1К-11 - 1К-12 в ЭГР-М, разомкнуть зажим 119 в ЭГР-2М); установить МИО (МИЧ) в среднее положение, а на зажимы 114-115 в ЭГР-М, 112-113 в ЭГР-2М поставить перемычку; в распайку резистора R119 включить микроамперметр. Дополнительно на первичную обмотку трансформатора Т102 (зажимы 102-105) в регуляторе ЭГР-М, Т103 (зажимы 107-108) в регуляторе ЭГР-2М включить вольтметр.

Испытания следует проводить следующим образом. При работе агрегата на автоматическом управлении с помощью МИО (МИМ) установить по указателю на колонке открытие направляющего аппарата, равное 50 % полного (может быть установлено любое открытие от 10 до 90 %). Затем управление агрегатом перевести на «ручное» и установить открытие НА, равное 60 % полного. На этом открытии измерить напряжение на датчике открытия и при различных положениях рукоятки потенциометра статизма фиксировать значения тока в цепи R119 и напряжения на трансформаторе (Т102 в ЭГР-М, Т103 в ЭГР-2М). После этого с помощью ограничителя направляющий аппарат закрыть до 40 % опять измерить напряжение на датчике открытия. На этом открытии НА для тех же положений рукоятки потенциометра статизма (при тех же напряжениям на Т102 или Т103) измерить значения тока в цепи R119. Статизм на различных уставках потенциометра можно рассчитать по формуле (10),

где DI - алгебраическая разность (сумма абсолютных значений) токов в цепи 119 при открытиях 60 и 40 %, мкА;

DU - разность (для ЭГР-2М, так как при открытии 50 % изменяется фаза напряжения) напряжений на датчике открытия, соответствующих 60 и 40 % открытия НА, В.

Результаты испытаний оформляются в виде таблицы уставок потенциометра и соответствующих им значений статизма.

Допускается вместо измерения напряжения на датчике открытия измерять открытие НА непосредственно на штоке сервомотора или регулирующего кольца по линейке с ценой деления 1 мм. Тогда равенство преобразуется в

где DY - разность устанавливаемых открытий направляющего аппарата (в %).

Ж.6.3.24. Градуировку переключателей временной неравномерности в регуляторах ЭГР-М можно проводить на работающем в сети агрегате на ручном управлении или на остановленном (с питанием электрической части от сети собственных нужд). Подготовительные операции: регулятор перевести на ручное управление, отключить ЧЧЭ (снять штеккер 1К11-12), потенциометр статизма установить на 0, снять штеккеры 1К-9-10, 1 К-15-16, разомкнуть зажим 051, на зажимы 224, 225 включить ЛАТР зажимами «сеть 220 В», на зажим 216 через рубильник включить движок ЛАТР, к зажимам 222 и закоротить зажимы 114-115. В разрыв зажима 212 включить микроамперметр.

Для градуировки переключателя изодрома (нагрузки или холостого хода) рекомендуется известный способ - по максимальному значению выходного параметра цепочки RC, так как широко применяемый способ определения интенсивности изодрома при закороченном конденсаторе не отражает действительную работу изодрома регулятора ЭГР (К)-М.

Испытания проводят следующим образом. На вольтметре, включенном на ЛАТР, установить напряжение, соответствующее 5 - 10 % открытия направляющего аппарата. Для этого предварительно должен быть отградуирован потенциометр-датчик открытия на R702.

При выбранных положениях переключателей П201, П203, П204 (или П202, П205, П206) замкнуть рубильник и фиксировать ток при максимальном отклонении стрелки микроамперметра. После окончания переходного процесса изменить полярность подключения микроамперметра.

Затем при размыкании рубильника опять фиксировать ток максимального отклонения стрелки. Временную неравномерность следует рассчитывать по формуле (10), где

DI - ток при максимальном отклонении стрелки, мкА;

U - напряжение, подаваемое на вход изодрома, В.

Интенсивность изодрома, определенная при замыкании рубильника, соответствует открытию НА, при размыкании - закрытию.

Испытания необходимо проводить при различных сочетаниях положений переключателей П201, П203, П204 (П202, П205, П206).

Результаты испытаний заносятся в таблицу, форма которой приведена в приложении.

Ж.6.3.25. Градуировку переключателя интенсивности изодрома в регуляторе ЭГР-2М производят по той же методике, что и в ЭГР-М. Отличие состоит в подготовительных операциях и в том, что градуировку переключателя П202 (или П204) достаточно провести только при одном из положений переключателя времени П201 (или П203). В целях уменьшения ошибки при измерениях из-за динамического заброса стрелки рекомендуется градуировку П202 (П204) производить на уставке 8 переключателя П201. В отличие от ЭГР-М в регуляторе ЭГР-2М градуировку переключателя интенсивности изодрома П202 (П204) можно производить при закороченном конденсаторе С201 (С205).

Подготовительные операции заключаются в следующем. Регулятор следует перевести на ручное управление. Потенциометр статизма установить на 0, отключить ЧЧЭ (разомкнуть зажим 119). Отключить МИЧ, разомкнуть зажим 060, а на зажимы 112-113 поставить закоротку. В разрыв зажима 208 включить микроамперметр, отключить гибкую обратную связь МУ (размыкается зажим 230). В разрыв зажима 044 включить рубильник. На зажимы 044-045 включить вольтметр и с помощью МИМ установить на нем напряжение, соответствующее 5 - 10 % открытия НА. Перед этим должен быть отградуирован сельсин-датчик открытия С701.

Градуировку переключателя временной неравномерности следует производить по приведенной для ЭГР (К)-М методике с учетом изложенных выше упрощений.

Ж.6.3.26. В регуляторах ЭГР-IT и ЭГР-2И-1 градуировку переключателей статизма «Вр» и интенсивности изодромов производят измерением коэффициента передачи интегрирующего усилителя в блоке БИУ (ЭГР-IT), в субблоке Н3 (ЭГР-2И-1) на различных уставках переключателей. Статизм и интенсивность изодрома рассчитывают по известным коэффициентам передачи узлов.

Для градуировки переключателя статизма перед испытаниями следует произвести подготовительные операции, как при снятии характеристики усилителя по входу от МИЧ.

Испытания заключаются в определении коэффициента передачи усилителя на каждом положении переключателя статизма. Статизм определяют по формуле

(11)

где KB - коэффициент передачи обратной связи от регулирующего органа, В/%;

Кf - коэффициент передачи ЧЧЭ, В/%;

, - коэффициенты передачи усилителя блока ГСС соответственно по входам от БИУ и обратной связи, мА/В;

- коэффициент передачи усилителя БИУ, измеренный на испытуемой уставке переключателя статизма.

Градуировку переключателя изодрома холостого хода и нагрузки следует производить аналогичным образом при положении переключателя статизма «Вр» = 0 и закороченном конденсаторе изодрома. Интенсивность «Bt» изодрома определяют по той же формуле, где

,

Ж.6.3.27. Определение постоянной времени изодрома в регуляторах с ламповым и магнитным усилителями следует производить при подаче на вход изодрома и снятии ступенчатого электрического сигнала, градуированного в единицах перемещения регулирующего органа.

Градуировку переключателя постоянной времени изодрома производят следующим образом. При замыкании и размыкании рубильника необходимо измерить время возврата стрелки миллиамперметра или микроамперметра от n делений до 0,37?n. Согласно известному свойству экспоненты измеренное таким образом время представляет собой постоянную времени экспоненты, а в данном случае постоянную времени изодрома.

В ЭГР с ламповым усилителем выход изодрома (ток) следует измерять по миллиамперметру в обмотке катушки ЭПГ, а в ЭГР с магнитным усилителем - микроамперметром в обмотках управления усилителя. Максимальный ток отклонения стрелки прибора должен быть в пределах линейности характеристики лампового усилителя.

Ж.6.3.28. Для регулятора ЭГР-М градуировку переключателя постоянной времени изодрома следует производить при различных сочетаниях положений переключателей П201, П203, П204 (П202, П205, П206).

Ж.6.3.29. Для регулятора ЭГР-2М градуировку переключателя «времени» П201 (П203) следует производить при одном из положений переключателя интенсивности П202 (П204), при котором обеспечивается первоначальное отклонение стрелки на всю шкалу прибора.

Ж.6.3.30. Для градуировки переключателя постоянной времени изодрома в регуляторе ЭГР-1Т дополнительно к подготовительным операциям градуировки переключателей интенсивности необходимо изъять субблок СБ-3 из блока БИУ; на гнезда Г1, Г2 блока БИУ подать напряжение постоянного тока с гнезд Г2, Г5 блока БПР; снять закоротку с конденсатора изодрома в субблоке СБ-6 блока БИУ.

На вывод 12 платы 1 переключателей 1П (П4) (выход изодрома) включить вольтметр. Сигнал на вход изодрома подается включением напряжения постоянного тока на Г1, Г2 БИУ от БПР, снимается - отключением БПР с гнезд БИУ и установкой на Г1, Г2 перемычки.

Ж.6.3.31. В регуляторе ЭГР-2И-1 при градуировке переключателя постоянной времени изодрома «Td» следует дополнительно переключатели Вр и Bt установить на 0, установить от МИЧ сигнал, проводящий выход интегрирующего усилителя в субблоке Н3 к +10 В или -10 В. На выход микросхемы А1 (вывод 11 платы 11 переключателя В 4t 0) включить вольтметр. Сигнал на входе изодрома (выходе усилителя) изменять установкой (снятием) перемычки на контрольные гнезда выхода усилителя.

Ж.7. Испытания гидромеханической части ЭГР

Ж.7.1. Характеристика главного сервомотора

Ж.7.1.1. Характеристику снимают, как правило, в районе открытий НА с максимальными перестановочными усилиями, но ее можно снимать и в районе других открытий в целях определения влияния перестановочных усилий на работу регулятора (на чувствительность, работоспособность и т.д.). В данном случае методика испытаний в районе 50 % открытия НА от полного.

Ж.7.1.2. Перед проведением испытаний необходимо провести подготовительные операции в следующем порядке:

перевести агрегат на ручное управление;

отключить все входы на усилитель, кроме входа от МИЧ (МИО), установить переключатели статизма и изодрома на 0;

установить на вспомогательный (промежуточный) сервомотор индикатор ИЧ-10 в среднее положение (чтобы малая стрелка указывала на цифру 5, а большая на цифру 0);

перевести рукоятку ЭГП в положение «автомат»;

установить с помощью ограничителя открытие НА на 5 - 10 % больше верхнего в снимаемом диапазоне открытий (для рассматриваемого примера - 65 - 70 %).

С помощью МИЧ (МИО) установить ток в катушке ЭГП, действующий «на убавить» по балансному прибору.

Ж.7.1.3. Последовательность испытаний следующая. Установить определенный ток через катушку ЭГП и произвести измерения:

тока в катушке ЭГП по миллиамперметру;

смещения главного золотника из «среднего» по индикатору;

времени перемещения сервомотора по секундомеру в заданном диапазоне изменения открытия НА по указателю на колонке (в рассматриваемом случае время перемещения сервомотора от 60 до 40 % полного, т.е. на 20 %). При медленном перемещении сервомотора диапазон можно уменьшить до 5 - 10 %.

Ж.7.1.4. После проведения необходимых измерений МИЧ (МИО) следует перевести в среднее положение, а затем в положение «на открытие».

Произвести измерения тех же величин при движении сервомотора в сторону открытия.

Во всех района открытия скоростную характеристику главного сервомотора следует снимать за одну установку индикатора.

Ж.7.1.5. По обработанным соответствующим образом результатам испытаний необходимо построить характеристики и определить: характеристику главного сервомотора, коэффициент передачи рычажной системы и тракта от ЧЧЭ до главного золотника, правильность регулирования долины распора.

Характеристика главного сервомотора представляет собой зависимость скорости перемещения сервомотора НА от значения тока в катушке ЭГП. Вид характеристики в районе максимальных перестановочных усилий (при максимальном напоре) представлен на рис. 3.4. По характеристике можно определить мертвую зону и среднюю скорость сервомотора на открытие и закрытие. По видоизменению этой характеристики в различных зонах открытий НА и при различных напорах оценить влияние перестановочных усилий на работу регулятора и работоспособность сервомотора.

Ж.7.1.6. Коэффициент передачи ЭГП к главному золотнику можно определить по зависимости перемещения главного золотника от значения тока в катушке ЭГП. С учетом коэффициента передачи электрогидравлического преобразователя по этой зависимости можно определить также коэффициент передачи рычажной системы от ЭГП к главному золотнику.

Коэффициент передачи от ЧЧЭ к главному золотнику определяется произведением Kf, полученным при испытаниях ЧЧЭ, на коэффициент передачи от ЭГП к главному золотнику и коэффициенты передачи элементов в тракте от ЧЧЭ до ЭГП.

Правильность установленной длины распора можно проверить по характеристике рис. 3.4. При правильно отрегулированной его длине площадка на характеристике, определяющая мертвую зону, должна располагаться слева от начала координат и смещаться влево при уменьшении перестановочных усилий или напора. Это определяется условием, что при потере питания или обрыве цепи к катушке ЭГП сервомотор не должен перемещаться или может медленно перемещаться на открытие НА.

Ж.7.1.7. Ход главного золотника до упоров и максимальную скорость перемещения сервомотора при крайних положениях золотника можно определить по зависимости скорости перемещения сервомотора от значения смещения золотника из «среднего» положения.

Проверку действия выявителя движения регулирующего органа в защите от разгона 115 % (катаракта или микровыключателя) следует производить при испытаниях по указанной выше методике. Проверка правильности действия катаракта заключается в определении минимальной скорости движения сервомотора, при которой поршень катаракта поднимается, воздействует на микропереключатель и не опускается во время движения сервомотора.

При проверке действия микровыключателя на главном золотнике следует измерять смещение золотника на закрытие, при котором происходит срабатывание микровыключателя.

Катаракт должен быть настроен так, чтобы его поршень не возвращался при скорости движения сервомотора не меньшей, чем при закрытии от аварийного золотника. Такую же скорость движения сервомотора должно обеспечивать смещение золотника, при котором происходит срабатывание микровыключателя, установленного на главном золотнике (вспомогательном сервомоторе).

Ж.7.2. Электрогидравлический преобразователь

Ж.7.2.1. Характеристики электрогидравлического преобразователя (ЭГТ) снимаются на остановленном агрегате (при наличии давления в МНУ и гидромеханической колонке), а также могут быть сняты на работающем агрегате на ручном управлении в сети или на холостом ходу.

Статическую характеристику ЭГП, представляющую собой зависимость выхода штока гидроусилителя от тока в катушке, снимают для определения коэффициента передачи ЭГП, определения диапазона действия выходного штока гидроусилителя и его «среднего» положения, а также для определения нечувствительности ЭГП (рис. 11).

Ж.7.2.2. Для снятия характеристики следует провести подготовительные операции в следующем порядке: на работающем в сети или остановленном агрегате рукоятку ЭГП перевести в положение «ручное». Снять распор от рычага под ЭГП к золотниковому рычагу. С помощью пружины (или резиновой ленты) замкнуть рычажную систему под ЭГП, рукоятку ЭГП перевести в положение «автомат»

При снятии характеристики в гидромеханических колонках второй и третьей модификаций (ЭГР-100 (250) - 2 или 3) рекомендуется измерять перемещение не выходного штока, а конца рычага в точке сочленения с распором - тягой от рычага под ЭГП к золотниковому рычагу. Установить индикатор непосредственно на шток

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 11. Статическая характеристика ЭГП:

а - для определения коэффициента передачи в диапазоне действия; в - для определения мертвой зоны и неточности ЭГП:

1 - прямой ход; 2 - обратный ход

гидроусилителя или в точке сочленения штока с рычагом невозможно, так как шток закрыт корпусом механизма перемещения опоры. В гидромеханической колонке четвертой модификации индикатор можно устанавливать непосредственно на выходной шток ЭГП без демонтажа рычажной системы.

В гидромеханических колонках второй и третьей модификаций подвижную опору рекомендуется устанавливать в крайнее положение. В этом случае коэффициент передачи рычажной системы Кр = 2 и при пересчете к штоку ЭГП показания индикатора достаточно разделить пополам. При отсутствии тока в катушке ЭГП индикатор установить в среднее положение.

Ж.7.2.3. Ток в катушке изменять ступенями. На каждой ступени фиксировать ток в катушке и показания индикатора. Для определения мертвой зоны характеристику следует снимать для прямого и обратного ходов. По результатам испытаний построить зависимость выхода штока гидроусилителя ЭГП от значения тока в обмотке катушки ЭГП и определить коэффициент передачи ЭГП, мертвую зону по току в катушке и неточность по перемещению штока. Перемещение штока от крайнего до положения, при котором ток в катушке ЭГП равен нулю, характеризую «среднее» положение поршня гидроусилителя ЭГП.

Ж.7.2.4. При снятии характеристик ЭГП следует измерить сопротивление катушки мостом постоянного тока. Измерения производить непосредственно на выводах катушки.

Ж.8. Испытания исполнительных органов системы регулирования гидротурбин

Ж.8.1. Снятие зависимости открытия направляющего аппарата от хода его главного сервомотора

Ж.8.1.1. Испытания необходимо проводить при остановленном агрегате и осушенной спиральной камере турбины.

Перемещение главного сервомотора следует производить ограничителем открытия ступенями через 10 % от полного закрытия до полного открытия, а затем в обратном направлении. При этом следует измерять положение штока сервомотора и просвет между тремя парами лопаток направляющего аппарата, расположенными через 120 друг от друга в трех точках по высоте лопатки.

По измеренным данным строится зависимость хода направляющего аппарата (средняя из измерений в указанных трех точках) от положения сервомотора.

Ж.8.1.2. Из полученной таким образом кривой (рис. 3.12) устанавливается характер зависимости и значение мертвого хода в передаче от сервомотора к направляющему аппарату в процентах полного хода сервомотора направляющего аппарата.

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 12. Кривая зависимости открытия НА от хода штока сервомотора

Погрешность измерения хода сервомотора ±0,5 мм, погрешность измерения открытия лопаток направляющего аппарата ±0,5 мм.

Допустимый мертвый ход в направляющем аппарате i на ? 0,5 % полного его хода.

Ж.8.2. Снятие зависимости угла разворота лопастей рабочего колеса от хода его главного сервомотора

Ж.8.2.1. Испытания необходимо проводить при остановленном агрегате и осушенной спиральной камере.

На втулке рабочего колеса следует укрепить временную шкалу, отградуированную в градусах.

С помощью механизма ручного управления комбинатора произвести перемещение главного сервомотора рабочего колеса ступенями через 10 % от полного закрытия до полного открытия, а затем в обратном направлении. При этом следует измерить положение штока главного сервомотора (по указателю положения лопастей на маслоприемнике) и угол разворота лопастей по временной шкале, установленной на втулке рабочего колеса.

Ж.8.2.2. По измеренным данным построить зависимость угла разворота лопастей от хода главного сервомотора лопастей.

Из полученной кривой можно установить характер зависимости и значение мертвого хода в передаче от сервомотора рабочего колеса к лопастям.

Погрешности измерения хода сервомотора ±0,5 мм, угла лопастей 0,5.

Допустимый мертвый ход ij ? 1°.

Ж.8.3. Проверка комбинаторной связи

Ж.8.3.1. Проверка комбинаторной связи поворотно-лопастных гидротурбин можно производить при работе гидроагрегата в энергосистеме. Проверка включает в себя определение комбинаторной зависимости, мертвой зоны и зоны неопределенности.

Для определения комбинаторной зависимости следует снять зависимость угла разворота лопастей рабочего колеса от хода сервомотора направляющего аппарата при прямом и обратном ходах. Для этого ограничителем открытия в зоне действия комбинаторной связи изменить открытие направляющего аппарата ступенями 5 - 7 % полного хода при движении его сначала в одном, а затем в другом направлении. При каждом установившемся состоянии системы регулирования произвести измерение открытия направляющего аппарата по шкале сервомотора (в мм) и угла разворота лопастей рабочего колеса по шкале на маслоприемнике (в град), при достаточной точности штатной шкале следует произвести дополнительно измерения по миллиметровой линейке. Для определения люфта в обратной связи следует также измерить положение груза обратной связи в колонке регулятора по миллиметровой линейке. Для каждого направления движения направляющего аппарата должно быть получено не менее 10 точек.

Ж.8.3.2. По результатам измерений построить график комбинаторной зависимости и сравнить с заводской или оптимальной комбинаторной зависимостью, определенной в результате натурных испытаний. Нанесение на график точек прямого и обратного ходов позволяет выявить наличие петли гистерезиса.

Мертвую зону в комбинаторной связи следует определять при различных (например, четырех) значениях открытия направляющего аппарата. Для ее определения на золотник сервомотора рабочего колеса установить индикатор перемещений частого типа. При медленном смещении направляющего аппарата ограничителем открытия в направлении закрытия необходимо наблюдать по индикатору за смещением золотника на закрытие. В момент трогания сервомотора рабочего колеса (начинается возврат золотника к среднему положению) измерить значение открытия направляющего аппарата. Затем при медленном перемещении сервомотора направляющего аппарата на открытие измерять то открытие, при котором после смещения золотника на открытие начинается его возврат в среднее положение. Разность между двумя измеренными открытиями направляющего аппарата равна значению мертвой зоны. Опыт следует повторить несколько раз. За значение мертвой зоны следует принимать среднее из измеренных. Результат будет тем точнее, чем медленнее будет перемещаться направляющий аппарат. Перемещение следует производить небольшими ступенями с паузами между ними.

Ж.8.3.3. Зона неопределенности установки лопастей рабочего колеса численно равна сумме мертвой зоны и люфта в обратной связи, приведенных к углу разворота лопастей по комбинаторной зависимости. При силах трения, превышающих гидравлические усилия, действующие на лопасти, зона неопределенности может проявляться в статическом отклонении угла разворота лопастей относительно найденной комбинаторной зависимости в пределах зоны.

В противном случае отклонения могут возникать при медленных колебаниях разворота лопастей при неизменном открытии направляющего аппарата.

Ж.8.4. Определение перестановочных усилий на главных сервомоторах

Ж.8.4.1. Определение значения перестановочных усилий производится по измерению усилия на штоке сервомотора, которое определяется для одного сервомотора как произведение площади его поршня на перепад давлений в его полостях. При двух сервомоторах площади полостей соответственно суммируются.

В момент трогания сервомотора можно записать следующие равенства:

при движении сервомотора в сторону открытия

Dро ? Sпо = FГ - FТ

при движении сервомотора в сторону закрытия

Dрз ? Sпз = FГ - FТ

где Dро и Dрз - перепад давлений соответственно при движении сервомотора на открытие и на закрытие, равный разности давлений в полостях открытия и закрытия;

Sпо, Sпз - площадь поршня сервомотора соответственно полости открытия и закрытия;

FГ - гидродинамическая сила, направление действия принято в сторону закрытия;

FТ - сила трения направлена встречно движению.

Из приведенных равенств можно получить выражения для расчета сил трения и гидродинамического воздействия

FГ = ?(DpoSпо + DpзSпз);

FТ = ?(DpoSпо - DpзSпз).

Ж.8.4.2. Известны два способа измерения перестановочных усилий: трогания, равномерного движения.

При измерении перестановочных усилий направляющего аппарата способом трогания на гидроагрегате, работающем в энергосистеме, регулятор частоты вращения перевести на ручное управление.

Начиная с полного закрытия главный сервомотор последовательно через 10 % устанавливать на определенное открытие. При каждом положении открытия НА следует производить медленное смещение ограничителя открытия в одну сторону и при этом необходимо наблюдать изменения давления в обеих полостях главного сервомотора.

В момент резкого изменения давления в сторону, противоположную медленному изменению давления, фиксировать значения максимальных отклонений давления в каждой полости в момент времени, предшествовавший указанному толчку давления.

Затем опыт следует повторить при том же открытии направляющего аппарата, но при медленном перемещении ограничителя открытия в противоположную сторону.

Положение главного сервомотора можно измерять по шкале указателя на колонке управления. Давление в полостях сервомотора необходимо измерять с помощью манометров класса точности не ниже 0,5, либо записывать с помощью специальных тензоманометров на осциллограф или другой регистрирующий прибор.

При использовании осциллографа вместо измерения давления в полостях сервомотора можно производить запись усилий в тягах сервомоторов с помощью тензодатчиков.

Ж.8.4.3. При определении перестановочных усилий на главном сервомоторе лопастей рабочего колеса порядок испытаний тот же, что и для главного сервомотора направляющего аппарата, только управление лопастями осуществляется с помощью механизма ручного управления лопастей.

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 13. Примерный вид характеристики перестановочных усилий сервомотора НА:

1 - усилие трения; 2 - гидравлическое усилие

Ж.8.4.4. Измерение перестановочных усилий регулирующих органов методом равномерного движения следует производить следующим образом. С помощью ограничителя открытия сервомотор медленно перемещают с постоянной скоростью. Время полного смещения сервомотора 1 - 2 мин. В процессе равномерного перемещения сервомотора через каждые 10 % хода необходимо фиксировать давление в обеих его полостях. При применении осциллографирования следует производить одновременную запись перемещения направляющего аппарата и давления в полостях сервомотора. Допустимая точность измерений такая же, как указывалось в первом способе.

Ж.8.4.5. На основании данных испытаний следует построить зависимость перестановочных усилий FТ и FГ от положения главного сервомотора (рис. 13), по которой определить характер, направление и значения действующих усилий.

Для оценки качества монтажа и ремонта регулирующего органа иногда необходимо определить силу трения в нем без гидродинамического усилия воды. Тогда перестановочные усилия следует определять при опорожненной от воды спиральной камере.

Ж.9. Испытания замкнутой системы регулирования

Ж.9.1. Испытания системы регулирования при работе гидроагрегата в режиме холостого хода

Ж.9.1.1. Для выбора оптимальных настроек регулятора следует записывать переходные процессы изменения частоты и открытия направляющего аппарата при ступенчатом изменении положения МИЧ (МИСВ). Значение ступенчатого сигнала не должно превышать зону линейности характеристики сервомотора. Запись обеих величин следует производить с помощью самопишущего прибора Н-320. Допускается также запись одной величины - частоты - с помощью самопишущего частотомера Н-345. Примерный вид переходных процессов приведен на рис. 14. По ним определяют основные показатели качества регулирования.

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 14. Переходные процессы при холостом ходе агрегата:

а - по частоте; б - пооткрытию НА

перерегулирование по частоте и открытию НА

амплитуда установившихся колебаний частоты и открытий НА .

По серии осциллограмм переходных процессов, полученных при различных параметрах настройки регулятора, можно выбрать такие настройки, при которых обеспечиваются наименьшие sх и Тn. Для получения наименьшего времени точной синхронизации генератора желательно выбирать апериодический или близкий к нему переходный процесс. Период колебаний частоты в установившемся состоянии должен быть более 15 с.

Ж.9.1.2. При выбранных параметрах настройки регулятора частоты вращения должен быть проверен процесс протекания ручной и автоматической точной синхронизации генератора. Наблюдение за уровнем частот производят по стрелке синхроноскопа. Необходимо проверить плавность изменения частоты вращения стрелки синхроноскопа при воздействии на МИСВ (МИЧ).

При установившемся процессе регулирования частоты вращения колебания частоты напряжения генератора и направляющего аппарата турбины должны иметь непериодический характер, так как они вызываются действием гидравлических возмущений потока воды. Наличие периодических колебаний системы регулирования может быть вызвано наличием люфтов в направляющем аппарате или в обратных связях.

Ж.9.2. Испытания системы регулирования при работе гидроагрегата в изолированной энергосистеме

Ж.9.2.1. При возможности выделения ГЭС на изолированную нагрузку должно быть проверено качество поддержания частоты в изолированной энергосистеме. Поскольку режим работы на изолированную нагрузку является временным, то согласно ПТЭ (гл. 39) допускается регулировать частоту с отклонениями в пределах ±0,2 Гц. Для выбора оптимальных настроек регуляторов необходимо осциллографировать процесс реализации сигнала изменения уставки частоты и процесс восстановления частоты при толчках мощности. Запись процесса изменения частоты можно производить самопишущим частотомером Н-345. Одновременно значение частоты следует контролировать по стрелочному частотомеру классы точности 0,2 - 0,5.

Ж.9.2.2. Для проведения испытаний с потребителями энергии должна быть согласована возможность их кратковременной работы при отклонениях частоты в пределах ±0,5 Гц. Для испытаний следует выбирать типичный случай работы ГЭС на изолированную нагрузку: состав потребителей энергии, число работающих агрегатов, параллельно работающих электростанций. При проведении испытаний на гидростанции все параллельно действующие с ней электростанции должны работать с теми настройками регулятора, которые они реально имеют при выделении их на изолированную нагрузку.

При наличии на ГЭС системы группового регулирования должно быть установлено требуемое режимом значение статизма (может быть также установлена нулевая степень неравномерности). С помощью корректора частоты в энергосистеме необходимо установить частоту на уровне минимально возможном из условий работы потребителей. На всех регуляторах задать одинаковые параметры настройки изодрома. Корректором частоты скачком подать сигнал на повышение частоты на 0,5 - 0,7 Гц (в пределах линейности системы регулирования) и произвести запись процесса изменения частоты. По окончании переходного процесса подать толчок на уменьшение частоты. Подобные опыты необходимо повести в пределах отсутствия колебательности при нескольких значениях параметров настройки изодрома.

Ж.9.2.3. По переходным процессам определяют основные показатели качества (как указано в п. Ж.9.1). При отсутствии на ГЭС системы группового регулирования, когда параллельная работа агрегатов осуществляется по статическим характеристикам регуляторов частоты вращения, определение качества процесса изменения уставки частоты следует проводить только в тех случаях, когда с помощью данной ГЭС осуществляется синхронизация ее с энергосистемой. В этой случае сигнал на изменение частоты следует подавать с помощью МИСВ (МИЧ) одного из агрегатов.

Ж.9.2.4. Процесс восстановления частоты необходимо проверить при сбросах и набросах нагрузки. Сброс нагрузки следует производить либо отключением потребителей, либо разделением с системой при наличии перетока мощности в сторону системы. Наброс нагрузки производить либо подключением потребителя, либо отключением одного из генераторов. Перед сбросом нагрузки частоту необходимо установить на минимально возможном уровне, а перед набросом - на максимально возможном уровне. Значение толчка должно быть не менее толчков нагрузки при нормальной работе потребителей. По переходному процессу изменения частоты (см. рис. 3.14, а) следует определить заброс частоты b и время переходного процесса Тn:

Ж.9.2.5. По переходным процессам изменение частоты при подаче управляющего (уставка частоты) и возмущающего (толчок нагрузки) воздействий можно выбрать приемлемые параметры настройки изодрома из следующих условий:

малая степень колебательности (не более одного - двух перерегулирований);

минимальное время восстановления частоты при толчках нагрузки с наименьшим из возможных забросов частоты;

минимальное время реализации измерения уставки частоты при наименьшем перерегулировании по частоте.

В зависимости от режимных особенностей работы ГЭС преимущественное внимание может уделяться либо второму, либо третьему условию.

Ж.9.3. Испытания системы регулирования при работе гидроагрегата в мощной энергосистеме

Ж.9.3.1. Испытания заключаются в определении характера процесса отработки заданной мощности. Задание мощности можно изменять дистанционно с помощью ключа механизма изменения мощности и от системы ГРАМ.

При управлении ключом МИМ следует проверить процесс ступенчатого набора и снятия нагрузки при отключенной и включенной изодромной обратной связи регулятора.

Ж.9.3.2. При выполнении связи между ГРАМ и регуляторами в виде параметрического сигнала управления осциллографирование процесса отработки мощности следует производить при подаче на вход регулятора ступенчатого сигнала управления. Регистрировать необходимо сигнал управления, смещение главного золотника, открытие направляющего аппарата и мощность на шинах генератора. Испытания следует производить при различных значениях открытия направляющего аппарата. В результате можно определить время переходного процесса изменения мощности, запаздывание мощности и регулятора.

Ж.9.3.3. При специальных испытаниях регулятора аналогично можно получить переходные характеристики при подаче ступенчатого воздействия по току в ЭГП (практически ступенчатое смещение главного золотника).

Ж.9.4. Испытания при сбросах нагрузки

Ж.9.4.1. Целью проведения испытаний на сбросы нагрузки с генератора является проверка не только качества работы системы регулирования, но и безопасности работы гидроагрегата и гидротехнических сооружений. Завод, изготавливающий турбинное оборудование, гарантирует обычно два параметра:

допустимое значение увеличения частоты вращения в процентах номинального значения при сбросе 100 % нагрузки;

допустимое значение повышения давления в напорных водоводах.

Если увеличение частоты вращения определяется целиком работой регулятора, то повышение давления зависит также от работы клапана холостого выпуска (при его наличии), поэтому при сбросах должно контролироваться его перемещение.

Для поворотно-лопастных турбин, где в ряде случаев возникает опасность подъема вращающихся частей после сброса нагрузки, следует контролировать во время сбросов давление над рабочим колесом и в отсасывающей трубе, а также осевое усилие.

Ж.9.4.2. Сбросы нагрузки следует выполнять перед наладкой и после наладки регулятора. Предналадочные испытания на сбросы нагрузки служат для выявления дефектов системы регулирования, а посленаладочные испытания позволяют установить состояние введенной в эксплуатацию системы регулирования. Испытания необходимо проводить последовательно при сбросах 25, 50, 75 и 100 % нагрузки от номинальной мощности агрегата. В случае, когда возможна работа агрегата с перегрузкой, следует проверять САР при сбросе максимальной мощности.

При сбросе нагрузки целесообразно осциллографировать следующие величины:

частоту вращения турбины;

открытие направляющего аппарата;

угол разворота лопастей рабочего колеса;

давление в напорном водоводе (в спиральной камере турбины);

давление над рабочим колесом турбины;

давление в отасасывающей трубе.

Одновременно с осциллографированием указанных величин необходимо производить их визуальные измерения.

Ж.9.4.3. При плановых эксплуатационных испытаниях допускается не производить осциллографирование.

В таком случае следует производить измерение следующих величин:

максимальной и установившейся частоты вращения;

времени закрытия направляющего аппарата;

повышения давления в спиральной камере;

сбрасываемой нагрузки.

Ж.9.4.4. Перед началом сбросов нагрузки необходимо произвести инструктаж наблюдателей: разъяснить порядок проведения испытаний и применения сигналов, а также правила заполнения протоколов испытаний. После получения разрешения на проведение сброса нагрузки наблюдателей расставить по их рабочим места и подать команду: «Подготовиться к сбросу». По этой команде следует произвести измерения контролируемых параметров. Непосредственно перед сбросом нагрузки руководитель должен подать команду на включение осциллографа, а затем на отключение генераторного выключателя. Наблюдатели должны записать максимальное и установившееся значения измеряемой величины. По окончании переходного процесса руководитель испытаний должен проверить по протоколам измеренные величины и вычислить максимальные значения гарантируемых величин.

Увеличение частоты вращения

где nмакс- максимальная частота вращения после сброса нагрузки, 1/с;

п0 - частота вращения до сброса нагрузки, 1/с.

Повышение давления Dр в напорном подводе определяется как

где Рмакс - максимальное давление в спиральной камере после сброса нагрузки, м;

Рстат - статическое давление в спиральной камере, м.

Разрешение на проведение следующего сброса нагрузки дается только в том случае, если контролируемые величины не превышают допустимых значений.

Измерение частоты вращения следует производить по тахометру - стационарному или переносному. Давление измерять по образцовым манометрам. Измерение вакуума над рабочим колесом и в отсасывающей трубе должно производиться в зоне, близкой к оси вала агрегата. Осевое усилие может измеряться и осциллографироваться по механическим напряжениям в несущей крестовине или в вале гидроагрегата путем наклейки тензодатчиков.

По осциллограммам и протоколам визуальных наблюдений при сбросах нагрузки следует определить максимальные значения частоты вращения, давления, взвешивающего осевого усилия, вакуума над рабочим колесом и в отсасывающей трубе и произвести их сравнение с допустимыми значениями. Определить время и характер перемещения направляющего аппарата и лопастей рабочего колеса, запаздывания в элементах системы регулирования, открытия клапана холостого выпуска и клапана срыва вакуума и время их возврата в нормальное положение.

По осциллограмме определяют качество переходного процесса регулирования: число и период перерегулирования, время окончания переходного процесса.

Ж.9.5. Определение нечувствительности и неточности системы регулирования

Ж.9.5.1. Определение можно производить несколькими способами. Один из них - по моменту начала перемещения регулирующего органа в разомкнутой системе автоматического регулирования (астатически настроенной) при непрерывном медленном (или ступенчатом с малыми ступенями) изменении командного сигнала, поданного на вход регулятора. Непосредственное определение нечувствительности регулятора к изменениям частоты может быть произведено при работе агрегата в энергосистеме, когда частота изменяется медленно с амплитудой, превышающей мертвую зону регулятора. Для этого на поршень сервомотора направляющего аппарата необходимо установить стрелочный индикатор и вблизи него частотомер. Путем одновременного наблюдения за показаниями индикатора и частотомера следует определить диапазон изменений частоты, в котором сервомотор не перемещается.

Описанный способ непосредственного определения мертвой зоны регулятора прост, однако он не дает достаточной точности.

Другой способ - определение мертвой зоны регулятора как суммы мертвых зон элементов, входящих в состав прямого тракта системы регулирования.

При работе агрегата в энергосистеме регулятор необходимо перевести на ограничитель открытия. Установить индикатор перемещений на конце маятникового рычага в точке его воздействия на побудительный золотник. Медленно поворачивая рукоятку ограничителя открытия, необходимо следить за показаниям индикатора. Стрелка индикатора будет перемещаться в одну сторону до тех пор, пока не сместится сервомотор и не возвратит рычаг к среднему положению. Отметить максимальное отклонение стрелки индикатора, после которого она начинает возвращаться к исходному положению. Аналогично измерить другое положение рычага при обратном направлении вращения рукоятки ограничителя. Зона между двумя положениями рычага образует мертвую зону.

В электрогидравлических регуляторах точкой измерений может служить выход усилителя на ЭГП или вход на магнитный усилитель от схемы суммирования сигналов от МИЧ и обратной связи. В этом случае следует измерять ток в ЭГП или распайке R119, а сигнал задавать МИЧ или МИО.

Зная удельную неравномерность маятника (ЧЧЭ) и коэффициент передачи от маятника (от ЧЧЭ) к измеряемой точке, мертвую зону по перемещению этой точки можно пересчитать на изменение частоты.

Этот способ дает полную оценку мертвой зоны системы регулирования, так как учитывает нечувствительность при преодолении подвижными элементами сил сопротивления трогания, которые больше сил трения движения.

Третий способ - по статическим характеристикам в замкнутой системе автоматического регулирования.

Ниже приводится методика определения нечувствительности и неточности по статическим характеристикам в системе автоматического регулирования, имеющей мертвую зону в прямом тракте и в обратной связи. В общем случае неточность системы регулирования определяется суммой мертвой зоны, приведенной к перемещению регулирующего органа, и неопределенности положения регулирующего органа, т.е. равенством:

iу = kic + jy (12)

где iy - неточность САР по положению регулирующего органа;

k - коэффициент передачи системы;

ic - мертвая зона по командному положению;

jy - неопределенность положения регулирующего органа.

Ж.9.5.2. Способ определения нечувствительности и неточности САР по статическим характеристикам заключается в следующем. При ступенчатом изменении командного сигнала, поданного на вход САР, необходимо получить статические характеристики прямого и обратного ходов. На каждой ступени измерить: командный сигнал, положение регулирующего органа и сигнал жесткой обратной связи. По полученным данным построить характеристики зависимости сигнала жесткой обратной связи от значений командного сигнала (рис. 15, а) и зависимости сигнала жесткой обратной связи от перемещения регулирующего органа (рис. 15, б). По первой характеристике можно определить мертвую зону ic системы регулирования по командному сигналу, а по второй - неопределенность системы регулирования jy, зависящую от значения мертвой зоны в обратной связи.

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

a)

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

б)

Рис. 15. Статические характеристики системы регулирования для определения мертвой зоны:

а - по командному сигналу; б - в обратной связи:

1 - прямой ход; 2 - обратный ход.

Коэффициент передачи системы можно определить по зависимости (см. рис. 15, а) как отношение перемещения регулирующего органа к соответствующему приращению командного сигнала:

Неточность САР следует определять по выражению (12), приведенному выше. В тех случаях, когда требуется определить только мертвую зону по частоте, мертвая зона по командному сигналу может быть определена по разности в точке суммирования командного сигнала и сигнала обратной связи при прямом и обратном ходах, а затем пересчитана на мертвую зону по частоте. В электрогидравлических регуляторах разность сигналов можно измерить на выходе лампового усилителя (на входе в обмотках управления магнитного усилителя) и через коэффициенты передачи узлов пересчитать ко входу регулятора.

Ж.9.5.3. В гидромеханических регуляторах разность сигналов следует измерять по положению гайки МИСВ (или любой точки маятникового или золотникового рычага) при прямом и обратном ходах. Мертвая зона регулятора по частоте определяется суммой измеренной мертвой зоны (во ходу МИСВ), приведенной к точке маятника, и мертвой зоны самого маятника.

Ж.9.5.4. В электрогидравлических регуляторах с магнитным усилителем определение мертвой зоны и неточности можно производить следующим образом.

Нечувствительность регулятора (мертвая зона по входному сигналу или частоте) следует определять при работе агрегата на автоматическом управлении при статической настройке регулятора частоты вращения.

Перед снятием характеристики необходимо произвести следующие подготовительные операции:

регулятор перевести на ручное управление;

отключить цепи схемы группового регулирования (ключ К301 перевести в положение «индивидуальное»);

отключить ЧЧЭ (в регуляторе ЭГР-М снять штеккер 1К11-12, в регуляторе ЭГР-2М отключить зажим 119);

в регуляторе ЭГР-2М отключить МИЧ (зажим 060 разомкнуть, а зажимы 112-113 закоротить);

в распайку резистора R119 включить микроамперметр (класса точности не ниже 1);

на обмотку управления 6Н-6К МУ включить схему (рис. 3.16);

рукояткой МИО (МИМ) выставить 0 на балансном приборе;

рукоятку ЭГП перевести в положение «автомат»;

переключатель изодрома нагрузки поставить в положение 0, чтобы исключить влияние гибкой обратной связи.

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Pиc. 16. Электрическая схема сигналов задания

Испытания производят следующим образом. В диапазоне открытий направляющего аппарата, где требуется определить чувствительность регулятора, изменением сигнала (от схемы рис. 16) открытие НА необходимо изменять ступенями 0,5 - 1 % сначала в одну, затем в другую сторону. На каждой ступени фиксировать показания вольтметра. По результатам испытаний построить графические зависимости тока от напряжения для прямого и обратного ходов. Разница в значениях тока при одном направлении характеризует чувствительность регулятора по входному сигналу (ic). Приведенная к частоте через коэффициент передачи (Kf) схемы ФЧВ-ЧЧЭ эта величина выражается в единицах изменения частоты (ix).

С изменением открытия направляющего аппарата мертва зона (чувствительность регулятора) по частоте может изменять в зависимости от перестановочных усилий, сил трения в направляющем аппарате и т.д.

Определение неточности регулятора следует производить одновременно с определением нечувствительности. Дополнительно к величинам, получаемым при определении нечувствительности на каждой ступени, измеряется ход сервомотора или регулирующего кольца по линейке с ценой деления 1 мм (с погрешностью ±0,5 мм).

По полученным данным необходимо построить зависимость тока в распайке резистора R119 от хода сервомотора (регулирующего кольца). По полученной характеристике можно определить коэффициент передачи статически настроенной системы регулирования (как отношение приращения хода сервомотора к соответствующему приращению тока в распайке резистора R119) и мертвую зону в обратной связи. Неточность регулятора следует определять по формуле

iу = kic + jy (13)

где iy - неточность регулятора по 7 ходу сервомотора, %;

k - коэффициент передачи статически настроенной системы регулирования, %/мкА;

ic - мертвая зона по входному сигналу, мкА;

jy - мертвая зона в обратной связи, % полного хода сервомотора.

Коэффициент передачи системы регулирования может быть рассчитан как К = 100/Bs, где Bs - установленный статизм, %.

Ж.10. Испытания вспомогательных устройств системы регулирования

Ж.10.1. Испытания холостых выпусков и клапанов срыва вакуума

Ж.10.1.1. Испытания холостого выпуска состоят, во первых, в измерении значения и времени подъема клапана и времени его посадки при максимальной скорости закрытия направляющего аппарата и, во-вторых, в определении той скорости сервомотора, при которой клапан холостого выпуска начинает открываться. Смещение клапана следует измерять линейкой с ценой деления 1 мм, а время - секундомером. Целесообразно также применять осциллографирование перемещений сервомотора направляющего аппарата и холостого выпуска. Испытания необходимо проводить при различных положениях дросселирующей иглы катаракта.

При наладке холостого выпуска следует стремиться к тому, чтобы клапан не открывался при нормальной скорости регулирования и управления агрегатом и открывался до максимального значения при максимальной скорости сервомотора.

Ж.10.1.2. Клапаны срыва вакуума служат для уменьшения вакуума, образующегося под крышкой турбины при сбросах нагрузки. Обычно используются два принципа в работе этих клапанов:

открытие клапана определяется скоростью закрытия направляющего аппарата;

открытие клапана срыва вакуума определяется значением вакуума под крышкой турбины.

Испытания первого типа клапанов не отличаются от испытаний холостых выпусков. Проверка эффективности их действия должна проводиться при испытаниях на сбросы нагрузки с агрегата. Время наладки клапана должно составлять 20 - 30 с. Испытания второго типа клапанов должны проводиться только при сбросе нагрузки с агрегата. При этом записывается ход клапана и вакуум под рабочим колесом. Начало открытия клапана должно происходить при разрежении 10 кПа (0,1 м вод. ст.).

Ж.10.2. Испытания защиты от разгона гидроагрегата

Ж.10.2.1. Испытания следует проводить на агрегате, работающем в режиме х.х. или остановленном с опорожненной спиральной камерой.

При сбросе нагрузки первую ступень защиты агрегата от разгона осуществляет регулятор турбины. В случае его неисправности действует вторая ступень - противоразгонная защита. На гидроагрегатах с гидромеханическими регуляторами последняя обычно представляет собой центробежный выключатель, срабатывающий при повышении частоты вращения до 140 - 145 % номинальной и действующий на золотник аварийного закрытия либо быстродействующие затворы. В связи с указанной последовательностью действия этой защиты скорость закрытия направляющего аппарата либо быстродействующего затвора устанавливается значительной меньшей, чем при действии первой ступени защиты.

Ж.10.2.2. Электрогидравлический регулятор имеет две ступени защиты: первая действует при повышении частоты вращения до 115 % и недостаточной скорости закрытия направляющего аппарата, а вторая - при разгоне агрегата до 140 - 160 % номинальной частоты вращения.

Скорость закрытия направляющего аппарата контролируется или с помощью противоразгонного катаракта, поршень которого поднимается достаточно для замыкания контакта микропереключателя только при определенной скорости закрытия направляющего аппарата, или смещением главного золотника, определяющим расчетную скорость закрытия НА.

Ж.10.2.3. При проверке противоразгонной защиты необходимо определять уставку по частоте вращения, при которой срабатывает реле оборотов или центробежный выключатель. Опыт следует производить при работе гидроагрегата в режиме холостого хода на ограничителе открытия при отключенном частоточувствительном элементе. Открытие сервомотора постепенно необходимо увеличивать до тех пор, пока не срабатывает противоразгонная защита, измерить частоту вращения в момент срабатывания защиты. Необходимо производить также проверку времени и характера закрытия быстродействующего затвора при действии разгонной защиты. Это время не должно превышать значения, установленного заводом-поставщиком, а сигнал на закрытие направляющего аппарата (на остановку) должен подаваться после полного закрытия затвора. Указанная проверка может проводиться при опорожненной от воды спиральной камере. Направляющий аппарат следует открыть полностью и подать импульс на закрытие от аварийного золотника. Если последнего нет в схеме, то импульс следует подать на закрытие быстродействующего затвора. При этом необходимо фиксировать время и характер закрытия направляющего аппарата или затвора.

Ж.10.2.4. Катаракт противоразгонной защиты электрогидравлического регулятора может проверяться при опорожненной от воды спиральной камере. При работе на ограничителе открытия направляющий аппарат необходимо закрывать с различной скоростью; определить минимальную скорость, при которой срабатывает контакт, шунтирующий действие схемы противоразгонной защиты. Определить время возврата поршня в исходное положение или время размыкания контакта микропереключателя после остановки сервомотора направляющего аппарата, которое должно составлять 2 - 3 с.

Правильность настройки контакта на главном золотнике может определяться при закрытом направляющем аппарате. С помощью ограничителя открытия главный золотник необходимо сместить «на закрытие» до упора. На шток вспомогательного сервомотора установить индикатор и заметить его показания. С помощью ограничителя открытия главный золотник сместить «на открытие» до замыкания контакта переключателя (но не больше чем до среднего положения золотника). Измеренный по индикатору ход должен быть не менее заданного заводом-поставщиком (около 1 мм).

Ж.10.3. Испытания маслонапорной установки

Ж.10.3.1. Маслонапорная установка (МНУ) состоит из аккумулятора давления, масляного бака, насосов с электроприводами, механизмов автоматики, контрольно-измерительных приборов и специальной арматуры.

Аккумулятор давления - сосуд, заполненный сжатым воздухом и маслом в определенном соотношении. В масляный бак поступает отработанное масло из системы регулирования; из бака масло засасывается насосом и подается в аккумулятор. Контрольно-измерительные приборы предназначены для измерения давления в аккумуляторе, уровня масла в аккумуляторе и в масляном баке. Механизмы автоматики обеспечивают автоматическое поддержание заданного уровня и давления масла в аккумуляторе.

Механизмы и арматура МНУ поставляются заводом-изготовителем в собранном виде испытанными и отрегулированными.

Необходимость в регулировании и наладке механизмов и арматуры возникает после каждой ревизии и ремонта МНУ. В таких случаях эксплуатационный персонал должен проводить подобные работы согласно инструкциям завода-поставщика, которые определяют порядок приведения МНУ в рабочее состояние. Эксплуатационный персонал ГЭС должен самостоятельно выполнять ряд работ, связанных с проверкой режима работы маслонасосов, действием перепускных и предохранительных клапанов, проверкой реле давления, определением протечек масла и т.д.

Ж.10.3.2. Подача маслонасоса определяется на остановленном агрегате при нормальном давлении в МНУ. Необходимо открыть запорный вентиль спускной трубы аккумулятора и снизить уровень масла до нижнего конца стекла указателя уровня. Затем вентиль плотно закрыть и пустить маслонасос в работу на аккумулятор. Маслонасос следует отключить при подъеме масла до наибольшего уровня. Секундомером измерить время работы насоса. По масломерному стеклу определить разность уровней масла в дециметрах до начала работы насоса и после его отключения. При этом следует иметь в виду, что изменение уровня масла по стеклу может отставать от изменений уровня масла в аккумуляторе, поэтому следует учитывать разность между наибольшим и наименьшим уровнями.

Подача насоса подсчитывается по формуле

где Dв - внутренний диаметр котла, дм (определяется по чертежу котла).

Измерения повторить два-три раза. Из полученных результатов вычислить среднее значение. Неточность полученных результатов тем больше, чем больше протечки масла, поэтому при испытаниях должно быть обращено особое внимание на плотность закрывания всех сливных вентилей.

При наличии шкалы указателя уровня масла в гидроаккумуляторе, цена деления которой составляет 1 % его объема, при определении подачи насоса следует использовать эту шкалу, что избавит от необходимости расчетов.

Ж.10.3.3. Определение протечек масла в системе регулирования следует производить по циклу работы маслонасосов МНУ.

При работе системы регулирования происходит переток масла из напорных полостей в безнапорные. В результате давления в аккумуляторе падает. Скорость снижения давления определяется несколькими факторами: протечками, связанными с технологией работы элементов системы, интенсивностью регулирования, зависящей от режима работы ГЭС, и состоянием золотников, маслопроводов и сервомоторов системы регулирования.

Режим работы насоса характеризуется отношением времени работы его на аккумулятор tp к времени работы на слив tc (или при прерывистом режиме работы - к времени, в течение которого насос не работает), т.е.

При нормальном состоянии системы регулирования режим работы должен быть 1:12 - 1:20. О явно ненормальном состоянии системы регулирования свидетельствует режим работы насоса 1:4 - 1:6. В этом случае должны быть выяснены причины столь больших протечек масла. Протечки через какую-либо масляную систему следует определять по разности протечек при открытом и закрытом давлении к этой системе.

Вначале необходимо определить протечки при всех полностью открытых запорных устройствах (qo). Для определения протечек через систему рабочего колеса следует определить протечки при закрытом запорном вентиле к системе рабочего колеса (q1).

Разница между qo и q1 составит значение протечек через масляную систему рабочего колеса. Аналогичным образом можно определить протечки через масляную систему направляющего аппарата, золотник ручного регулирования, электрогидравлический преобразователь, арматуру маслонапорной установки и т.д.

Значение протечек может быть вычислено:

по режиму работы насоса и его подаче

непосредственным измерением снижения уровня масла в аккумуляторе на величину h за промежуток времени t при остановленном насосе

В большинстве конструкций гидромеханических регуляторов и в электрогидравлических регуляторах нет запорных устройств, с помощью которых можно отделить систему управления сервомотором рабочего колеса от системы управления сервомотором направляющего аппарата. С помощью главной задвижки можно лишь отделить протечки через арматуру МНУ от протечек через системы управления сервомоторами. Поэтому протечки раздельно через сервомотор (рабочего колеса или направляющего аппарата) и присоединенный к нему маслопровод, а также через аппаратуру гидромеханической колонки (золотники, ЭГП и т.д.) рекомендуется определять по следующей методике.

Испытания, как правило, проводят при опорожненной спиральной камере. Испытания могут быть проведены также на остановленном или работающем в сети агрегате. Управление сервомотором направляющего аппарата следует осуществлять ограничителем открытия, а сервомотором лопастей рабочего колеса - ручным управлением.

Протечки через арматуру маслонапорной установки qм определить при закрытой главной задвижке от котла МНУ к регулятору.

Протечки через гидромеханическую колонку qк определить при установки главных золотников СНА и СРК в «среднее» положение, которое характеризуется равенством давлений в полостях соответствующего сервомотора, находящегося не в крайнем положении. Из полученных суммарных протечек q1, необходимо вычесть протечки через арматуру МНУ: qк = q1 - qм.

Протечки через сервомотор рабочего колеса (и маслопроводы к нему) qсрк следует определять при установке главного золотника сервомотора направляющего аппарата в среднее положение, а главного золотника СКР - в одно из крайних положений. Из полученных при этих испытаниях протечек q2 для получения qcpк необходимо вычесть протечки через арматуру МНУ и аппаратуру гидромеханической колонки qcрк = q2 - qк - qм = q2 - q1.

Аналогичным образом можно определить протечки через сервомотор направляющего аппарата. Главный золотник сервомотора рабочего колеса при этом необходимо установить в «среднее» положение, а главный золотник СНА - в крайнее: qcHA = q3 - qк - qм = q3 - q1.

Ж.11. Средства испытаний, обработка и оформление результатов испытаний

Ж.11.1. При проведении испытаний следует пользоваться средствами измерений, поверенными или аттестованными в установленном Госстандартом порядке и имеющими действующие поверительные клейма или свидетельства о поверке или аттестации.

Ж.11.2. При проведении повторных испытаний следует пользоваться приборами того же типа и класса точности.

Ж.11.3. Мгновенные измерения должны производиться по сигналу одновременно всеми наблюдателями и через равные интервалы для каждой точки измерений.

Ж.11.4. Диапазон изменения измеряемой величины должен приходиться на всю шкалу прибора. Относительная погрешность измерений меньше, если показания приборов приходятся на вторую половину шкалы.

Ж.11.5. Микроамперметры и миллиамперметры следует включать в ту часть цепи, которая заземляется. Следует пользоваться миллиамперметрами и микроамперметрами с малым, а вольтметрами - с большим внутренним сопротивлением.

Ж.11.6. Неэкранированные приборы не рекомендуется располагать вплотную друг к другу, так как один прибор может влиять на магнитное поле другого.

Ж.11.7. Для использования при различных измерениях должно быть подготовлено достаточное количество удобных для работы протоколов с четким указанием величин, подлежащих измерениям. Примерный вид протоколов приводится в приложении.

Ж.11.8. При снятии характеристик следует обращать внимание на полярность сигнала. За положительные значения сигналов рекомендуется принимать полярность (или фазу), вызывающую действие на открытие направляющего аппарата.

Ж.11.9. Возможно погрешности в измерениях рассчитываются по приборной погрешности и приводятся через масштаб при графическом построении характеристики к зоне действительных измерений. Зона действительных измерений определяется следующим образом:

абсолютные инструментальные погрешности измеряемых параметров D1 и D2определяются как

в единицах измеряемой величины;

при выбранных масштабах m1 и m2 для графического построения характеристики приборная погрешность выражается как

зона, в которой относительно действительной характеристики располагаются точки совместных измерений, определенные с погрешностью, не превышающей приборную, выражается как

При графическом построении характеристики ее следует проводить так, чтобы большинство измеренных точек лежало внутри зоны действительных измерений. Линия, проведенная через середину зоны, представляет собой определяемую характеристику, наиболее приближенную к действительной (см. рис. 10).

Точки, находящиеся за пределами зоны действительных измерений, следует считать недействительными. Если более четверти всех измеренных точек попадает за пределы зоны разброса, опыт считается недействительным. Действительных точек должно быть не менее 10.

Ж.11.10. Рекомендуется на каждый регулятор иметь папку, в которой должны храниться протоколы последних и предыдущих испытаний, протоколы испытаний до и после наладки, а также тетрадь с регистрацией сбоев в работе регуляторов и мероприятий по устранению неисправностей.

Приложение

типовые протоколы испытаний

протокол № 1 от ____________________ 198___ г.

Объект _______ агрегат № ________ РЧВ № _______ тип ЭГР ________

Исполнители: _________________________________________________

Характеристика частоточувствительного элемента (по входу частоты)

Прибор

Номер

Тип

Класс точности

Шкала делений

Предел измерения

Погрешность

Место установки или включения

Частотомер

±Df

Микроамперметр

±DI

Отпайки L101 R119 = _____ кОм

1

2

3

4

5

6

7

8

9

10

11

12

13

14

f Гц

I мкА

(дел.)

Kх = мкА/Гц Кf = дел/Гц

При графическом построении характеристики

Масштаб частоты тf Гц/мм

Масштаб тока mI = мкА/мм

Зона действительных точек

Дополнительные данные:

Заключение:

Подписи:

ПРОТОКОЛ № 2 от ________________ 198 ___ г.

Объект ___________ агрегат № _______ РЧВ № ____ тип ЭГР ________

Исполнители: ______________________________________________

Градуировка потенциометра статизма

Прибор

Номер

Тип

Класс точности

Шкала делений

Предел измерения

Погрешность

Место установки

Микроамперметр

Uпит = В R119 = ______ кОм

1. Y1 = %

вр дел.

Iy1 мкА

КЖОС = _____________

2. Y2 = %

вр дел.

Iy2 мкА

DIy мкА

вр %

вр %

(по протоколу № 1 от _______)

DIy = Iy1 - Iy2 (при одинаковых значениях вр дел.) DY = Y1 - Y2

Дополнительные данные:

Заключение:

Подписи:

ПРОТОКОЛ № 3 от ________________ 198 ___ г.

Объект ___________ агрегат № _______ РЧВ № ____ тип ЭГР ________

Исполнители: ______________________________________________

Характеристика главного сервомотора

Прибор

Номер

Тип

Класс точности

Шкала делений

Предел измерения

Погрешность

Место установки или включения

Микроамперметр

Индикатор

Секундомер

Указатель

Напор Н = ___ м

1. В районе открытий Yмин = __________; Yмакс = ____________

1

2

3

4

5

6

7

8

9

10

11

12

13

14

I мА

U мм

Y %

V %/с

t с

Мертвая зона is = ___________ iI = мА

2. В районе открытий Yмин = __________; Yмакс = ____________

1

2

3

4

5

6

7

8

9

10

11

12

13

14

I мА

U мм

Y %

t с

V %/с

Мертвая зона is = мм, iI = мА

При графическом построении характеристик рис. № __________

Масштаб тока тI = мА/мм fI = - = мм.

Масштаб перенесения золотника m0 = мм/ммfU = - = мм.

Масштаб скорости mU = %/с мм fU = - = мм.

Зова действительных точек f =O = мм.

Дополнительные данные:

Заключение:

Подписи:

ПРОТОКОЛ № 4 от ________________ 198 ___ г.

Объект ___________ агрегат № _______ РЧВ № ____ тип ЭГР ________

Исполнители: _________________________________________________

______________________________________________________________

Градуировка переключателей интенсивности в постоянной времени изодрома

Прибор

Номер

Тип

Класс точности

Шкала делений

Предел измерений

Погрешность

Место установки

Вольтметр

Микроамперметр

Секундомер

Линейка

1. Градуировка датчика положения регулирующего органа

Uпит =

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Y мм

U В

Кдо = В/% за 100 % хода регулирующего органа принято

________________ мм хода

2. Интенсивность изодрома _____________

Переключатель постоянной времени ______________ дел.

bt дел.

1

2

3

4

5

6

7

8

9

10

11

12

DU В

I мкА Открытие

I мкА Закрытие

bt % Закрытие

bt % Открытие

Кх = мкА/% по протоколу № 1 от _________

3. Постоянная времени изодрома ___________________

Переключатель интенсивности _________________ дел.

Td дел.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Td с Открытие

Td с Закрытие

Дополнительные данные:

Заключение:

Подписи:

ПРОТОКОЛ № 5 от ________________ 198 ___ г.

Объект ___________ агрегат № _______ РЧВ № ____ тип ЭГР ________

Исполнители: __________________________________________________

_______________________________________________________________

Чувствительность регулятора

Прибор

Номер

Тип

Класс точности

Шкала делений

Предел измерений

Погрешность

Место включения

Вольтметр

Микроамперметр

Uпит = _____ 3. Уставка потенциометра статизма ____ дел.

Кх = _________ (по протоколу № 1 от ____________)

1. В районе открытий Y1 = ___________ Y2 = _________

Прямой ход

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Uз В

Ic мкА

Обратный ход

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Uз В

Ic мкА

Мертвая зона по входному сигналу ic = ____________

Условия измерений

Контролируемые величины

Сбрасываемая мощность

25 % (МВт)

50 % (МВт)

75 % (МВт)

100 % (МВт)

Установившиеся значения после сброса

Открытие НА, %

Частота вращения, % (об/мин)

Давление в спиральной камере, м

Давление под РК, м

Время закрытия НА, с

Время сворачивания лопастей РК, о

Число ходов сервомотора

Изменение частоты вращения Dn, %

заводское

фактическое

Изменение давления в спиральной камере DН, %

заводское

фактическое

Дополнительные данные:

Заключение:

Подписи:

Приложение И

(обязательное)

Методические указания по эксплуатационному контролю вибрационного состояния конструктивных узлов гидроагрегатов

И.1 Общие положения.

И.1.1 Определение вибрационного состояния гидроагрегата осуществляется путем измерения вибрации его опорных конструкций, биения вала и вибрации стальных конструкций и лобовых частей обмоток статора, которые должны подвергаться также тщательному осмотру. Мерой вибрации узлов гидроагрегатов является размах полигармонического виброперемещения. Результаты вибрационных испытаний совместно с результатами осмотра позволяют достаточно объективно судить об эксплуатационном состоянии агрегата.

И.1.2 Измерение вибрации гидроагрегата, а также осмотр конструктивных узлов и лобовых частей обмотки статора должны проводиться до и после каждого капитального ремонта. В межремонтный период необходимость проведения измерений и осмотров устанавливается в зависимости от результатов предыдущих обследований и при возникших предположениях об изменении (ухудшении) вибрационного состояния агрегата. В частности, после аварийных переходных режимов (например, несинхронного включения или внезапного КЗ на шинах генератора или близкого КЗ за трансформатором) должны быть проведены внеплановые измерения вибрации лобовых частей обмотки статора и их осмотр. Решение о проведении внеочередных технических обследований принимает технический руководитель гидроэлектростанции.

И.1.3 Измерения вибрации и биения вала гидроагрегата желательно производить в одних и тех же точках датчиками с одинаковыми техническими и метрологическими характеристиками, по возможности одними и теми же датчиками.

И.1.4 Вибрационные испытания проводятся по программе, подписанной руководителем испытаний и уполномоченными представителями технических подразделений ГЭС, согласованной при необходимости с территориальным диспетчерским центром и утвержденной техническим руководителем гидроэлектростанции.

И.1.5 Результаты вибрационных испытаний необходимо фиксировать в протоколах с четким указанием места измерения вибрации, применявшейся аппаратуры, параметров вибрации (частота, размахи) и всех параметров режима работы гидрогенератора (активная и реактивная мощности, напряжение и ток статора, ток ротора, температура меди обмотки и сердечника статора, уровни бьефов, открытие направляющего аппарата, углы установки лопастей рабочего колеса).

И.1.6 По результатам измерений вибрации должно быть составлено заключение с оценкой вибрационного состояния гидроагрегата и соответствующими рекомендациями.

И.1.7 При затруднениях у персонала ГЭС и/или у управляющей компании ОГК (ТГК) в определении причин повышенной вибрации и разработке мероприятий по их устранению, должна быть привлечена специализированная организация для проведения углубленного технического обследования (специальных испытаний) и разработки рекомендаций.

И.2 Средства измерения вибрации и биения вала

И.2.1 Основные требования к аппаратуре, используемой для измерения вибрации опорных конструкций гидроагрегата и стальных конструкций статора гидрогенератора, следующие:

- рабочий диапазон частот -

0,7 - 200 Гц;

- рабочий диапазон размаха

5 - 1000 мкм;

виброперемещений -

- рабочий диапазон температур:

для первичных преобразователей

+5 - +80 °С;

(вибродатчиков)

для вторичного прибора

+10 - +40 °С;

- допустимая индукция внешнего магнитного

0,1 Т;

поля -

- неравномерность АЧХ в рабочем диапазоне

10 %;

частот -

- масса вибродатчика не более

- 0,5 кг;

И.2.2 Основные требования к измерителям биения вала следующие:

- рабочий диапазон частот

- 0,4 - 20 Гц;

- рабочий диапазон размаха биений

- 30 - 2000 мкм;

- рабочий диапазон температур -

+5 - +40 °С;

- допустимая индукция внешнего магнитного

0,1 Т;

поля -

- масса датчика не более -

0,2 кг;

Датчики биения вала должны быть бесконтактными с зазором между датчиком и валом не менее 2 мм, устойчивыми к воздействию воды и масла.

И.2.3 Аппаратура, используемая для измерения вибрации лобовых частей обмотки статора гидрогенератора должна удовлетворять следующим требованиям:

- рабочий диапазон частот -

40 - 300 Гц;

- рабочий диапазон размаха

5 - 1000 мкм;

виброперемещений -

- рабочий диапазон температур:

Для первичных преобразователей

+5 - +80 °С;

(вибродатчиков)

Для вторичного прибора

+10 - +40 °С;

- допустимая индукция внешнего магнитного

0,3 Т;

поля -

- неравномерность АЧХ в рабочем диапазоне

10 %;

частот -

- масса вибродатчика не более -

0,2 кг;

И.2.4 Аппаратура для измерения вибрации и биения вала может иметь на выходе стрелочный прибор, но при этом должна быть обеспечена возможность параллельной записи сигнала на светолучевом осциллографе или ввода в ПЭВМ для автоматического анализа.

Аппаратура может также иметь встроенный анализатор для выделения и измерения гармонических составляющих вибрации.

И.2.5 Виброизмерительная аппаратура должна быть аттестована или подвергаться контрольной тарировке перед испытаниями.

И.3 Контроль вибрации опорных конструкций и биения вала гидроагрегата

И.3.1 Причины повышенной вибрации.

И.3.1.1 Силы, вызывающие вибрацию опорных опорных конструкций и биение вала агрегата, имеют механическое, гидравлическое и электромагнитное происхождение. Как правило, они воздействуют на узлы агрегата одновременно, но в разной степени.

И.3.1.2 Характерным признаком наличия механических возмущающих сил является наличие вибрации при работе агрегата после отключения из режима синхронного компенсатора или после закрытия направляющего аппарата при останове агрегата.

И.3.1.3 Характерным признаком наличия гидравлических возмущающих сил является исчезновение или значительное снижение вибрации при переводе гидроагрегата в режим синхронного компенсатора с освобождением от воды камеры рабочего колеса.

И.3.1.4 Характерным признаком наличия электромагнитных возмущающих сил является увеличение вибрации при подаче возбуждения на холостом ходу агрегата.

И.3.1.5 Измерение вибрации и биения вала в объеме и в режимах, указанных в п. 3.2. настоящего приложения, позволяет оценить уровень вибрации и установить, какие возмущающие силы - механические, гидравлические или электрические - вызывают повышенную вибрацию.

И.3.2 Места установки вибропреобразователей и датчиков биения вала и режимы испытаний гидроагрегата.

И.3.2.1 На вертикальном гидроагрегате первичные вибропреобразователи (вибродатчики) следует устанавливать следующим образом:

- на грузонесущей крестовине для измерения вертикальной и горизонтальной вибрации;

- на опоре пяты (при опирании подпятника на крышку турбины через опорный конус) для измерения вертикальной вибрации;

- на негрузонесущей крестовине, имеющей направляющий подшипник, для измерения горизонтальной вибрации;

- на крышке турбины для измерения вертикальной вибрации;

- на корпусе турбинного подшипника для измерения горизонтальной вибрации.

И.3.2.2 Вибродатчики для измерения вертикальной вибрации грузонесущей крестовины и крышки гидротурбины следует устанавливать возможно ближе к оси гидроагрегата. Вибродатчики для измерения вертикальной вибрации опоры пяты следует устанавливать возможно ближе к основанию подпятника у дна маслованны.

Вибродатчики для измерения горизонтальной вибрации следует устанавливать таким образом, чтобы вибрация измерялась в радиальном направлении.

И.3.2.3 Все вибропреобразователи на вертикальном гидроагрегате следует устанавливать в одной вертикальной плоскости, например, со стороны правого берега. В случае крестовины мостового типа, имеющей различную жесткость в разных направлениях, измерения горизонтальной вибрации следует производить в направлении наименьшей жесткости, и в этой плоскости следует устанавливать все вибропреобразователи на гидроагрегате.

И.3.2.4 Измерение биения вала вертикального гидроагрегата следует производить у всех направляющих подшипников (турбинного, верхнего и нижнего генераторного). Датчики биения вала должны быть установлены в одной вертикальной плоскости с датчиками вибрации.

И.3.2.5 На горизонтальном гидроагрегате первичные вибропреобразователи следует устанавливать следующим образом:

- на корпусе каждого опорного подшипника сверху для измерения вертикальной вибрации и сбоку (в горизонтальной плоскости, проходящей через ось агрегата) для измерения горизонтальной вибрации в радиальном направлении;

- на корпусе упорного подшипника для измерения горизонтальной вибрации в осевом направлении;

- на ребро капсулы в горизонтальной плоскости, проходящей через ось агрегата, для измерения вертикальной вибрации.

И.3.2.6 Биение вала горизонтального гидроагрегата следует измерять у каждого опорного подшипника сверху.

И.3.2.7 Необходимо обеспечить надежный контакт каждого вибропреобразователя с деталью, на которую он устанавливается. При невозможности установки вибропреобразователя непосредственно на деталь, следует применять промежуточные жесткие полки или кронштейны, обеспечивающие передачу вибрации без искажений. Собственная частота полки или кронштейна с вибропреобразователем не должна совпадать с частотой какой-либо составляющей измеряемых колебаний.

И.3.2.8 Датчики биения вала могут устанавливаться как на корпусах подшипников, так и на специальных кронштейнах, прикрепленных к неподвижным конструкциям (стенкам шахты турбины, опорному конусу, крестовине и др.). В последнем случае кронштейны должны быть достаточно жесткими.

И.3.2.9 Измерение вибрации и биения вала следует производить при следующих режимах работы гидроагрегата:

- холостой ход без возбуждения с частотами вращения ротора 0,8; 0,9; 1,0 и 1,1 от номинальной;

- холостой ход с номинальным возбуждением и при номинальной частоте вращения;

- параллельная работа с сетью при нагрузках от нуля до номинальной ступенями по 20 % номинальной нагрузки;

- режим синхронного компенсатора с камерой рабочего колеса, освобожденной от воды;

- выбег гидроагрегата после отключения от сети из режима синхронного компенсатора при освобожденной от воды камере рабочего колеса; при отсутствии на ГЭС режима синхроннного компенсатора с освобожденной от воды камерой рабочего колеса измерения производят при выбеге из генераторного режима.

И.3.3. Оценка уровня вибрации опорных конструкций и биения вала гидроагрегата.

И.3.3.1 Оценка вибрации опорных узлов гидроагрегата производится по размаху виброперемещения в зависимости от частоты в диапазоне частот 1 - 30 Гц (рисунок). При частоте более 30 Гц недопустимым считается размах более 40 мкм, при частоте менее 1 Гц - 180 мкм.

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

И.3.3.2 При периодической вибрации оценка производится по размаху виброперемещения каждой его гармонической составляющей и по суммарному размаху виброперемещения с использованием зависимостей, приведенных на рисунке. При этом оценка суммарного размаха виброперемещения проводится по нормам для низшей из составляющих частот. Из всех оценок принимается худшая.

И.3.3.3 Если вибрация имеет непериодический характер, то оценка уровня вибрации производится по среднему размаху и средней частоте. Средний размах определяется как отношение суммы пиковых значений вибрации на выбранном интервале времени к половине числа пиков. Интервал времени должен быть выбран таким, чтобы на нем было не менее 10 периодов оборотной частоты.

Среднюю частоту определяют как отношение половины числа пиков за выбранный интервал времени к этому интервалу.

В протоколе с результатами контроля вибрации кроме среднего должен быть указан также максимальный размах вибрации на выбранном интервале времени.

И.3.3.4 Типовые решения, принимаемые на основе оценки вибрационного состояния конструктивных узлов гидроагрегата, приведены в таблице И.1.

Таблица И.1

Оценка вибрационного состояния

Решение

«Отлично»

Периодичность измерений вибрации не реже одного раза в 6 лет

«Хорошо»

Периодичность измерений вибрации один раз в 3 года

«Удовлетворительно»

Периодичность измерений вибрации один раз в год

«Неудовлетворительно»

Устранение повышенной вибрации при первой возможности. До устранения повышенной вибрации проводить контроль вибрации не реже одного раза в два месяца

«Недопустимо»

Эксплуатация агрегата без особого разрешения управляющей компании ОГК (ТГК) не допускается.

И.3.3.5 Оценку уровня биения вала гидроагрегата следует производить сравнением результатов измерения с предельными значениями, установленных на основе рекомендаций заводов-изготовителей гидротурбины и гидрогенератора и опыта эксплуатации и указанными в стандарте организации ГЭС.

И.4 Контроль вибрационного состояния стальных конструкций статора

И.4.1 Причины вибрации.

И.4.1.1 Вибрация стальных конструкций статора гидрогенератора содержит составляющую частоты 100 Гц и полигармоническую низкочастотную составляющую, которая представляет собой, как правило, сумму четырех-пяти низших гармонических составляющих. Частота первой гармонической составляющей равна частоте вращения вала гидроагрегата, а частоты более высоких порядков кратны первой.

И.4.1.2 Наиболее вероятной причиной повышенной вибрации частоты 100 Гц являются недостаточная плотность стыковых соединений составного сердечника, которая в процессе эксплуатации может существенно уменьшаться. Вибрация может быть как общей, так и местной, причем ее неравномерность может быть не только вдоль окружности сердечника, но и по его высоте. Ранним признаком ухудшения состояния стыков является повышенный уровень вибрации на «холодном» (до 30 °С) сердечнике, и ее уменьшение по мере нагрева генератора.

И.4.1.3 Другими, менее распространенными причинами вибрации сердечника частоты 100 Гц могут быть неудачная схема обмотки статора и уравнительные токи генератора. При неудачном выборе числового ряда обмотки наблюдается рост вибрации сердечника с увеличением нагрузки генератора. Влияние уравнительных токов может быть обнаружено по наличию периодических изменений (типа биений) уровня вибрации.

И.4.1.4 Низкочастотная вибрация статора, имеющая место при всех режимах работы агрегата, в том числе при холостом ходе без возбуждения, обусловлена механическими причинами и передается с вращающихся частей агрегата через опорные конструкции. Низкочастотная вибрация, возникающая при подаче возбуждения, является следствием искажения формы ротора или витковых замыканий в обмотках его полюсов. Способы определения форм ротора и статора подробно изложены в Приложении Ф.

И.4.2 Места измерения вибраций, установка вибропреобразователей и режимы работы генератора при испытаниях.

И.4.2.1 Вибрация частоты 100 Гц измеряется в радиальном направлении на спинке сердечника статора в среднем сечении по его высоте по обеим сторонам каждого стыка секторов, а также в середине каждого сектора.

И.4.2.2 Низкочастотная вибрация измеряется в радиальном направлении на спинке сердечника, полках и обшивках корпуса статора в среднем сечении по его высоте в середине каждого сектора, а также в нескольких точках по окружности фланца корпуса и в прилежащих точках фундамента.

И.4.2.3 На кольцевых (бесстыковых) статорах вибрация частоты 100 Гц и низкочастотная вибрация измеряются на сердечнике и полках корпуса в двух сечениях по высоте и в 4-х - 6-ти точках по окружности гидрогенератора при номинальном напряжении. В 2-х - 4-х точках измеряются вибрации верхнего и нижнего фланца корпуса в местах их крепления к верхней крестовине и фундаментным плитам соответственно. Особо следует проверять зависимости вибраций от теплового состояния гидрогенератора.

И.4.2.4 Крепление вибропреобразователей к исследуемому конструктивному узлу может осуществляться с помощью болтов, жестких распорок, струбцин, клеев на эпоксидной основе и т.п. Крепление должно обеспечивать жесткий механический контакт, исключающий взаимное перемещение исследуемого узла и вибропреобразователя.

И.4.2.5 Измерения вибрации следует производить при следующих режимах работы гидрогенератора:

- холостой ход без возбуждения с номинальной частотой вращения вала (измеряется только низкочастотная вибрация);

- холостой ход с различными уровнями возбуждения, обеспечивающими напряжение генератора от 0,4 до 1,0Uном ступенями по 0,2Uном. При сложности осуществления режимов холостого хода с возбуждением меньше номинального допускается измерение вибрации только при Uном. Измерения проводятся при «холодном» (не выше 30 °С) и при «горячем» (выше 50 °С) сердечнике;

- параллельная работа с системой в установившемся тепловом состоянии генератора при различных уровнях активной нагрузки, вплоть до номинальной или максимально возможной по условиям эксплуатации, а также в режиме синхронного компенсатора (если генератор эксплуатируется в данном режиме).

И.4.3 Осмотр стальных конструкций статора.

И.4.3.1 Осмотру подлежат узлы крепления сердечника, спинка сердечника и стыки секторов статора, а также штифты нижнего фланца корпуса и узлы крепления корпуса к фундаменту.

И.4.3.2 При осмотре должны быть установлены качественные характеристики, место обнаружения анормальностей и, по возможности, их количественная оценка. Следует обращать особое внимание на:

- наличие контактной коррозии активной стали;

- трещины и обрывы сварных швов узлов крепления сердечника;

- трещины и изломы наборных призм (клиньев);

- разрушение (сколы, выкрашивания) активной стали;

- волна и «домики» активной стали;

- подвижность вентиляционных распорок;

- ослабление распорных домкратов;

- ослабление и выползание штифтов фланца корпуса;

- ослабление затяжки гаек стяжных шпилек сердечника и анкерных болтов.

И.4.3.3 Подробно приемы осмотра по широкому кругу узлов генератора, критерии оценок и форма записи результатов изложены в Приложении М.

И.4.4 Оценка вибрационного состояния стальных конструкций статора гидрогенератора.

И.4.4.1 Оценка вибрационного состояния стальных конструкций по уровню вибрации частоты 100 Гц и низкочастотной вибрации проводится раздельно в соответствии с таблицами И.2 и И.3, которые в зависимости от результатов измерения вибрации и результатов осмотра сердечника статора и узлов его крепления к корпусу, а также корпуса и его крепления к фундаменту предлагают три оценки состояния генератора: «удовлетворительно», «неудовлетворительно» и «недопустимо».

Таблица И.2 - Оценка вибрационного состояния стальных конструкций статора гидрогенератора по составляющей вибрации частоты 100 Гц

Параметры, определяющие состояние гидрогенератора

Оценка

Двойная амплитуда вибрации частоты 100 Гц, мкм

Результаты осмотра

При параллельной работе с системой (сердечник «горячий»)

При холостом ходе с возбуждением (сердечник «холодный»)

до 30

до 50

Слабые следы контактной коррозии на спинке сердечника. Повреждений узлов крепления сердечника и ослабления затяжки гаек стяжных шпилек - нет

Удовлетворительно

более 30

более 50

Обильная контактная коррозия на спинке сердечника и клиньях корпуса. Повреждений узлов крепления сердечника и ослабления затяжки гаек стяжных шпилек - нет

Неудовлетворительно

более 30

более 50

Наличие трещин и изломов в узлах крепления сердечника. Ослабление затяжки гаек стяжных шпилек. Обильная контактная коррозия на спинке сердечника и клиньях корпуса

Недопустимо

Таблица И.3 - Оценка вибрационного состояния стальных конструкций статора гидрогенератора по низкочастотным составляющим виброперемещений

Параметры, определяющие состояние гидрогенератора

Оценка

Размах низкочастотных гармоник или их суммы на холостом ходу с возбуждением или при параллельной работе с системой, мкм

Результаты осмотра

до 80

Повреждений узлов крепления сердечника, ослабления распорных домкратов, выползания штифтов фланца корпуса - нет

Удовлетворительно

до 180

Повреждений узлов крепления сердечника нет. Ослабление распорных домкратов. Выползание отдельных штифтов фланца корпуса

Неудовлетворительно

более 180

Наличие повреждений в узлах крепления сердечника. Ослабление распорных домкратов. Массовое выползание штифтов фланца корпуса

Недопустимо

И.4.4.2 По результатам оценки вибрационного состояния генератора принимается решение о его дальнейшей эксплуатации и срокам обследования. Соответствующие рекомендации приведены в таблице И.4.

Таблица И.4 - Рекомендации по дальнейшему контролю вибрации и осмотрам и допустимости эксплуатации гидрогенератора

Оценка вибрационного состояния

Рекомендуемые решения

Удовлетворительно

Эксплуатация без ограничений. Периодичность измерения вибрации и осмотров - один раз в 4 - 6 лет - до и после капитального ремонта при отсутствии внезапно возникших аномалий

Неудовлетворительно

Выяснение причин повышенной вибрации и их устранение при первой возможности вывода гидроагрегата в ремонт. До устранения повышенной вибрации проводить измерения и осмотр один раз в год

Недопустимо

Немедленный вывод генератора в ремонт для устранения повреждений и причин повышенной вибрации. При невозможности немедленного ремонта эксплуатация генератора допускается только по решению технического руководителя ГЭС. При наличии зависимости вибрации от режима работы эксплуатировать гидрогенератор в наиболее «легком» режиме. Контрольные измерения вибрации и осмотры проводить не реже одного раз в полгода

И.5 Контроль вибрационного состояния лобовых частей обмотки статора.

И.5.1 Причины вибрации.

И.5.1.1 Вибрация лобовых частей обмотки статора содержит составляющую 100 Гц - в нормальном режиме и 50, 100, 150 и 200 Гц - в переходных режимах.

И.5.1.2 Основной причиной повышенной вибрации в нормальных и переходных режимах работы гидрогенератора является наличие слабо демпфированных резонансов лобовых частей обмотки статора вблизи частот возмущающих сил - 50, 100, 150 и 200 Гц. Указанные резонансы зависят от системы и качества крепления обмотки у выхода из паза и у головок.

И.5.1.3 Вибрации лобовых частей обмотки зависят также от плотности заклиновки стержней в пазах статора.

И.5.2 Места измерения вибрации, установка вибропреобразователей, режимы работы генератора при испытаниях и обработка результатов.

И.5.2.1 Вибрация измеряется в радиальном и тангенциальном направлениях на головках верхних и нижних лобовых частей обмотки статора (по возможности не на изоляционных коробках), а также вблизи выхода из паза.

И.5.2.2 Вибропреобразователи рекомендуется заключать в изоляционные обоймы, приклеиваемые к лобовым частям обмотки эпоксидным клеем.

И.5.2.3 Вибропреобразователи устанавливаются не менее, чем на десяти стержнях обмотки.

И.5.2.4 Для определения вибрационного состояния лобовых частей производится снятие их амплитудно-частотных характеристик (АЧХ) в режиме установившегося трехфазного короткого замыкания генератора.

Для снятия АЧХ производят осциллографирование вибросмещений лобовых частей при выбеге гидрогенератора. Закоротку устанавливают на выводах гидрогенератора или за трансформатором. Ток ротора должен быть неизменным, что обеспечивает неизменность тока статора. С этой целью на время испытаний гидрогенератор переводится на резервное возбуждение, либо возбуждение подается от соседнего гидрогенератора и выводятся из работы соответствующие защиты. Уровень возбуждения устанавливается таковым, чтобы при номинальной частоте вращения ротора ток статора был номинальным. Виброграммы снимаются примерно через каждые 5 % изменения частоты вращения ротора в диапазоне 0,4 - 1,2 от номинального значения.

И.5.2.5 Измерения вибрации проводятся при одном тепловом состоянии генератора - «горячем» (не менее 50 °С).

И.5.2.6 Построение АЧХ выполняется следующим образом: для каждого j-го фрагмента осциллограммы определяется частота тока, а в каждой кривой виброперемещения известными способами выделяется гармоническая составляющая удвоенной частоты тока, двойная амплитуда которой приводится к номинальному току статора по соотношению:

2А = 2Aj(Ij/Iном)2,

где Ij - ток статора в испытуемом режиме;

Iном - номинальный ток статора;

2Аj - размах вибрации при токе Ij;

2А - размах вибрации при токе Iном;

после чего строятся кривые изменения размаха этой составляющей виброперемещения в зависимости от частоты возмущающей силы, равной удвоенной частоте тока статора.

Результаты измерения вибрации при номинальном токе статора на номинальной частоте вращения, по которым оценивается состояние узла, подвергаются статистической обработке следующим образом. Определяется среднеарифметическое значение вибрации:

где 2Ai кз- размах вибраций в i-ой точке,

т - число вибропреобразователей, установленных в одинаковых местах лобовых дуг и одинаково ориентированных;

С доверительной вероятностью р = 0,975 вычисляется расчетный предельный уровень вибрации:

пр.кз = 2 + st(p),

где - эмпирический стандарт,

t(p) - коэффициент, зависящий от т и определяемый по таблице:

т

10

15

20

30

t(р)

2,23

2,13

2,09

2,04

Полученное предельное значение вибрации при номинальном токе статора пересчитывается на нагрузочный режим по соотношению:

2Апр.нагр = 1,3 2Апр.кз

и используется далее для оценки вибрационного состояния лобовых частей обмотки статора.

И.5.3 Осмотр лобовых частей обмотки статора.

И.5.3.1 При осмотре лобовых частей обмотки статора необходимо обращать внимание на следующие дефекты:

а) ослабление заклиновки жестких элементов крепления (распорок, дистанционных прокладок и т.д.);

б) ослабление и обрывы бандажных вязок;

в) следы истирания изоляции или покровной ленты в местах соприкосновения с жесткими элементами;

г) течи охлаждающей воды в головках (для генераторов с непосредственным водяным охлаждением);

д) нарушение целостности элементов крепления или стержней обмотки статора (трещины, износ поверхности и т.д.).

И.5.3.2 Подробно приемы осмотра, критерии оценок и форма записи результатов изложены в Приложении М.

И.5.4 Оценка вибрационного состояния лобовых частей обмотки статора.

И.5.4.1 Оценка вибрационного состояния лобовых частей обмотки статора производится с помощью таблицы И.5 по предельному уровню вибрации с частотой 100 Гц, приведенной к номинальному нагрузочному режиму, определяемому в соответствии с п. И.5.2.6., а также по результатам осмотров.

И.5.4.2 По результатам оценки вибрационного состояния лобовых частей обмотки статора принимается решение о ее дальнейшей эксплуатации и сроках технического обследования. Рекомендуемые решения приведены в таблице И.5.

Таблица И.5 - Оценка вибрационного состояния лобовых частей обмотки статора гидрогенератора и рекомендации по дальнейшему контролю вибрации, осмотрам и допустимости эксплуатации гидрогенератора

Предельная вибрация частоты 100 Гц, мкм

Результаты осмотра

Оценка

Рекомендуемые решения

до 50

Замечаний нет (или обнаружены отдельные ослабления элементов крепления)

Удовлетворительно

Вибрационные испытания и осмотры - один раз в 4 - 6 лет - до и после капитального ремонта, или после переходных аварийных режимов

50 - 100

Массовые ослабления элементов крепления. Следы истирания. Отдельные течи воды в головках

Неудовлетворительно

Восстановление системы креплений при первой возможности. До устранения повреждений измерение вибрации и осмотры - один раз в год

более 100

Массовые нарушения целостности элементов крепления. Массовые течи воды в головках

Недопустимо

Восстановление или модернизация системы креплений при первой возможности. Измерение вибрации при трехфазном КЗ - один раз в три месяца. При росте уровня вибрации - немедленный вывод в ремонт

Приложение К

(справочное)

Конструктивные нормы и допуски в узлах гидроагрегатов, подлежащие проверке при эксплуатационном контроле

К.1 Общие положения

К.1.1 В настоящем Приложении приведены технологические требования, нормы и допуски, обеспечивающие надлежащее качество сборки и надежную работу узлов и отдельных механизмов гидроагрегатов, нормы и пределы допустимых отклонений от проектных данных, фиксируемые в исполнительной технической документации по монтажу гидроагрегатов и проверяемые при техническом контроле состояния гидроагрегатов в период их эксплуатации.

К.1.2 На обработанных поверхностях закладных частей гидротурбин, подверженных воздействию водотока, резкие уступы в местах соединений не допускаются. Уступы на необработанных поверхностях должны быть сглажены путем их подрубки, шлифовки или опиловки. Величина сглаженных уступов не должна превышать 5 мм при диаметре рабочего колеса до 5 м и 8 мм при диаметре рабочего колеса до 10,5 м. В металлических облицовках указанные уступы не должны превышать 15 % толщины листа.

К.1.3 Смонтированные конструкции проточной части гидротурбин должны быть тщательно уплотнены в местах соединения отдельных элементов и не допускать протечек. Плотным считается соединение, в которое щуп толщиной 0,05 ммне проходит. Допускаются местные неплотности, в которые щуп 0,05 мм проходит на глубину не более 20 % ширины стыка данного соединения.

К.2 Рабочие механизмы гидротурбин

К.2.1 Направляющий аппарат

К.2.1.1 Все фланцевые и стыковые соединения частей направляющего аппарата, находящиеся под воздействием водотока, должны быть уплотнены и не допускать протечек. В этих соединениях резкие уступы не допускаются.

К.2.1.2 Зазоры между смежными лопатками, не имеющими резинового уплотнения, при закрытом направляющем аппарате и снятом давлении в сервомоторах допускаются только местные. Величины этих зазоров не должны превышать следующих значений:

Высота направляющей лопатки, мм

Величина зазора, мм

500

0,05

1000

0,10

1500

0,15

2000

0,20

Суммарная длина всех местных зазоров между двумя смежными лопатками не должна превышать 20 % длины тела лопатки.

К.2.1.3 В направляющих аппаратах с резиновым уплотнением лопаток должно обеспечиваться плотное и равномерное сжатие резины по всей длине лопатки без зазоров при сервомоторе, находящемся на стопоре. При этом зазоры между металлическими поверхностями при сжатой резине должны быть в пределах 0,5 - 1,0 мм.

К.2.1.4 Величина полного открытия смонтированного направляющего аппарата должна соответствовать проектной. Отклонение от полного проектного открытия допускается только в сторону его увеличения в пределах, указанных в документации завода-изготовителя.

К.2.1.5 Величину натяга натравляющего аппарата устанавливают соответственно документации завода-изготовителя. При этом минимальное давление в маслонапорной установке (МНУ), обеспечивающее проектный натяг, не должно превышать заданного заводом.

К.2.1.6 Сервомоторы направляющего аппарата должны быть установлены так, чтобы оси их тяг и тяг регулирующего кольца в сочленениях не имели излома в вертикальной плоскости и соединялись с регулирующим кольцом без принудительного усилия.

К.2.1.7 Уплотнительные манжеты в подшипниках направляющих лопаток должны обеспечивать достаточную герметичность. Протечки воды через манжеты допускаются только небольшими прерывистыми струйками, полностью проходящими через сливные трубки.

К.2.1.8 Окончательно отрегулированное при монтаже положение направляющего аппарата должно быть зафиксировано нанесением меток на передаточных звеньях от сервомоторов к регулирующим кольцам и от серег к рычагам направляющих лопаток.

К.2.1.9 Смещение оси крышки гидротурбины относительно оси вала допускается в зависимости от диаметра рабочего колеса в пределах:

Диаметр рабочего колеса, м

Величина смещения, мм

до 3,0

0,75

« 5,0

1,50

« 7,5

2,0

« 9,5

2,5

« 10,5

3,0

К.2.1.10 В конструкциях гидротурбин с подшипниками направляющих лопаток, расположенными в крышке турбины, центровка последней производится по соосности лопаток со своими подшипниками, с проверкой вращения лопаток.

К.2.2 Рабочие колеса гидротурбин

К.2.2.1 Уплотнительные кольца, насаженные на обод рабочего колеса радиально-осевого типа целиком или отдельными частями, должны быть надежно закреплены на ободе, плотно обжимать его по окружности, а стыки сборного кольца должны быть заварены и тщательно зашлифованы. Неконцентричность между собой верхнего и нижнего уплотнительных колец и несоосность их с валом допускается в пределах 0,1. величины одностороннего зазора в лабиринтном уплотнении рабочего колеса.

К.2.2.2 Уплотнения рабочего колеса поворотно-лопастного типа должны быть испытаны пробным давлением масла в течение 24 ч. при температуре рабочего колеса и масла не ниже 5 °С. Величину пробного давления устанавливает завод-изготовитель. Протечки масла через уплотнения лопастей не допускаются.

К.2.2.3 Высотное положение рабочего колеса в кратере (для вертикальных агрегатов) определяются фактическим положением смонтированных фундаментных и закладных частей. При этом зазоры между вращающимися и неподвижными частями гидротурбины могут иметь отклонения от проектных значений в пределах допусков, приведенных в таблице К.1.

К.2.2.4 Зазоры между лопастями рабочего колеса и камерой поворотно-лопастных гидротурбин (в открытом и закрытом положениях лопастей), зазоры между рабочим колесом и неподвижными частями гидротурбины, а также зазоры в лабиринтных уплотнениях радиально-осевых колес, после соединения валов гидроагрегата и центрировании могут иметь отклонения в пределах 20 % от их номинального значения, установленного заводом-изготовителем.

К.2.2.5 Показания величины угла разворота лопастей поворотно-лопастного рабочего колеса по градуировке на шкале маслоприемника должны соответствовать показаниям угла разворота их по градуировке на фланце лопасти.

Таблица К.1 Зазоры между вращающимися и неподвижными частями гидротурбин

Проверяемое положение

Место замера

Величина отклонения (± мм) в зависимости от диаметра рабочего колеса (м)

2,0

4,0

6,0

8,0

9,5

10,5

Высотное положение рабочих колес ПЛ-гидротурбин

От верхней плоскости нижнего кольца НА до верхнего торца втулки РК

-

3,0

4,0

5,0

6,0

7,0

Высотное положение рабочих колес РО-гидротурбин

Совмещение уплотнительных колец на верхнем ободе РК (вращающегося) и в крышке турбины (неподвижного)

1,0

2,0

2,5

3,0

-

-

Величина выступа кромок входного сечения рабочих колес РО-гидротурбин

Верхняя и нижняя входные кромки РК относительно плоскости крышки турбины

1,0

1,0

2,0

3,0

-

-

Зазоры между рабочим колесом и неподвижными частями гидротурбины и в лабиринтных уплотнениях РО-гидротурбин

В местах, указанных в заводской и монтажной документации

В пределах 20 % от заданного проектного зазора

К.2.2.6 Когда ротор гидроагрегата находится на подпятнике, вертикальные зазоры между неподвижными и вращающимися частями гидротурбины должны не менее чем на 5 мм превышать заданную заводом-изготовителем величину подъема ротора гидрогенератора на тормозах.

К.2.3 Направляющий подшипник гидротурбины

К.2.3.1 К стыковым соединениям корпуса, вкладыша и ванн направляющего подшипника предъявляются требования, относящиеся к плотным соединениям деталей гидротурбин, изложенные в п.п. К.1.3 и К.2.1.1.

К.2.3.2 Зазоры между вкладышем подшипника и валом, замеренные в четырех направлениях, а в сегментном подшипнике - по каждому сегменту, могут иметь отклонения от их проектного значения в пределах до 20 %.

К.2.3.3 Вертикальный зазор в уплотнении торцового (лепесткового) типа должен устанавливаться с учетом изменения высотного положения вала гидроагрегата при нагрузке.

К.2.3.4 Неравномерность зазоров между расточкой верхнего фланца крышки ванны подшипника и валом не должна превышать 0,75 мм.

К.2.4 Маслоприемник и штанги рабочего колеса поворотно-лопастной гидротурбины

К.2.4.1 Перед установкой маслоприемника на место должны быть проверены соосность и зазоры между втулками и штангой. Эти зазоры должны быть равномерными по окружности втулок и соответствовать проектному значению.

К.2.4.2 Нижний опорный фланец маслоприемника при его установке не должен отклоняться от горизонтали более чем на 0,05 мм на 1 м его диаметра.

К.2.4.3 Неравномерность зазоров между гребенками в основании маслоприемника и в маслоотражателе не должна превышать 0,15 мм.

К.2.4.4 Сопротивление изоляции корпуса маслоприемника и обратной связи комбинатора от корпуса магнитной системы должно быть не менее 1 МОм

К.3 Система регулирования гидротурбин

К.3.1 Маслонапорная установка (МНУ)

К.3.1.1 Масловоздушный котел с установленными на нем аппаратурой, приборами и смонтированным маслопроводом должен быть испытан на отсутствие протечек масла и воздуха. При отключенном масляном насосе, закрытых вентилях и гидроклапанах падение рабочего давления в котле.

К.3.1.2 Реле пониженного давления (реле давления с перепадом) должно быть настроено так, чтобы резервный масляный насос включался при давлении в котле, которое ниже номинального рабочего давления на величину, указанную в инструкции завода.

К.3.1.3 Реле аварийно-низкого давления должно давать импульс на остановку агрегата при падении давления в МНУ до минимальной величины, необходимой для закрытия направляющего аппарата турбины. Величина этого давления задается заводом-изготовителем.

К.3.2 Колонка регулятора и обратная связь

К.3.2.1 Время перемещения передаточных механизмов в колонке регулятора, действующих от электропривода, не должно превышать заданного заводом-изготовителем, а ручные приводы должны работать плавно, не требуя значительного усилия.

К.3.2.2 Стрелки указателей на колонке регулятора при крайних положениях сервомотора направляющего аппарата должны показывать полное закрытие и величину полного открытия направляющего аппарата.

К.3.3 Маслопроводы системы регулирования

К.3.3.1 Смонтированные напорные маслопроводы испытываются гидравлическим давлением, равным 1,25 рабочего давления, в течение 5 мин. Сливные маслопроводы испытываются давлением 8 кгс/см2 в течение 5 мин. Протечки в сварных швах и фланцевых соединениях не допускаются.

К.3.3. В местах присоединения трубопроводов к оборудованию регуляторов. МНУ и маслоприемнику не должно создаваться усилий, вызываемых деформацией труб. Трубы должны прочно закрепляться на своих опорах (подвесках).

К.4 Гидрогенераторы

К.4.1 Крестовины гидрогенераторов

К.4.1.1 Крестовины генераторов, независимо от их назначения и места установки (на фундаменте, на статоре), должны быть надежно закреплены на своем основании и зафиксированы штифтами, либо фиксирующими планками, которые должны быть надежно приварены к основанию, где они установлены. Смонтированная крестовина может иметь отклонения от установочных данных в пределах следующих допусков:

положение по высотной отметке относительно фланца вала гидротурбины:

опорная (грузонесущая) крестовина

± 2,0 мм;

поддерживающая крестовина

± 3,0 мм;

соосность с валом гидроагрегата

± 1,5 мм;

негоризонтальность

0,1 мм на 1 м диаметра установочной плоскости.

К.4.1.2 Элементы сборных конструкций крестовин в местах их соединений должны быть плотно закреплены. Надлежащее качество креплений в наиболее ответственных соединениях (лапы) обеспечивается предельной расчетной равномерной затяжкой болтов и плотностью стыкуемых плоскостей. Плотным считается соединение, в которое щуп 0,1 мм не проходит. Допускаются местные неплотности, в которые может проходить щуп 0,5 мм на глубину не более 15 % ширины сопрягаемого соединения. Длина отдельного неплотного участка в соединении не должна превышать 200 мм, а суммарная длина всех неплотных участков на одной стороне соединения не должна превышать 20 % ее длины. Достаточная плотность в соединениях элементов крестовины в случае необходимости, может быть достигнута применением подогнанных по месту металлических прокладок. При этом штифтовка не должна быть нарушена.

К.4.1.3 В гидрогенераторах с электрической изоляцией крестовин, величина сопротивления изоляции должна быть не менее 1,0 МОм.

К.4.2 Ротор гидрогенератора

К.4.2.1 В сборном остове (звезде) ротора должна быть обеспечена предусмотренная заводской документацией посадка и плотность его соединения по стыкам. Качество креплений наиболее ответственных соединений (спины с центральной частью, дисками и втулкой) обеспечивается предельной расчетной равномерной затяжкой болтов (шпилек) и плотностью стыкуемых плоскостей.

В этом случае плотным считается соединение, в которое щуп 0,1 мм не проходит. Допускаются местные неплотности, в которые может проходить щуп 0,1, не более 10 % ширины сопрягаемого стыка, а длина отдельного неплотного участка допускается не более 100 мм. Общая длина всех неуплотненных местных участков не должна превышать в сумме 15 % длины соединяемого стыка.

К.4.2.2 Спрессованные пакеты обода ротора могут иметь отклонения по высоте не более 2 % их проектной высоты. Высота полностью опрессованного обода ротора может иметь отклонение от проектной величины в пределах 0,5 %.

К.4.2.3 Полностью собранный спрессованный и затянутый шпильками обод ротора должен быть надежно расклинен на спицах (остове, звезде) при помощи клиньев с предварительным подогревом обода. Величина натяга нагреваемого обода ротора задается заводом-изготовителем.

К.4.2.4 При навешивании полюсов на обод ротора ближайшие по весу полюса или группы полюсов должны располагаться диаметрально противоположно. Отклонение середины сердечника полюса от средней линии ротора допускается в пределах, указанных в таблице К.2.

Таблица К.2 Допуски по ротору гидрогенератора.

Характер отклонения

Место замера

Величина отклонения (±мм) в зависимости от диаметра ротора (м)

до 5

до 9

до 15

Неконцентричность обода ротора

По радиусу от вала или центра втулки ротора до наружной боковой поверхности обода (как среднее арифметическое замеров по верху и по низу обода)

0,4

0,6

0,8

Неконцентричность полюсов

По радиусу от вала или центра втулки до внешней плоскости сердечника полюса (как среднее арифметическое замеров по верху и по низу полюса)

0,5

0,8

1,0

Высотное положение полюсов относительно обода ротора

От середины сердечника полюса до средней линии обода ротора

5,0

8,0

10,0

Биение поверхности трения тормозного диска

Плоскость трения диска

3,0

3,0

4,0

К.4.2.5 При центрировании ротора относительно статора генератора, между ними должен быть выдержан воздушный зазор, величина которого у каждого полюса не должна отличаться от среднего значения по всему ротору более чем на ±10 %. Воздушные зазоры по каждому полюсу определяют как среднее арифметическое зазоров, измеренных вверху и внизу между внешней плоскостью сердечника полюса и активной сталью статора.

К.4.2.6 В полностью собранном роторе могут иметь место отступления от проектных данных в пределах допусков, указанных в таблице К.2.

К.4.3 Статор гидрогенератора

К.4.3.1 Смонтированный на фундаменте статор должен быть надежно закреплен на своих фундаментных плитах, а положение его зафиксировано штифтами, как предусмотрено проектом.

К.4.3.2 Пазовые клинья обмотки статора должны плотно прижимать стержень (катушку) в пазу. Плотность прижатия пазовым клином обмотки контролируется простукиванием. Дистанционные распорки должны быть уложены в зазорах плотно с туго натянутыми бандажами.

К.4.3.3 Изоляция соединений обмотки, уложенной в зонах стыковых соединений статора, должна быть плотно наложенной, без ощутимых пустот и вздутий и не должна деформироваться при сжатии ее рукой. Изоляция соединений обмотки с термореактивной изоляцией производится по инструкции завода-изготовителя.

К.4.3.4 Лобовые части обмотки не должны выступать за пределы внутреннего контура активной стали статора. Отклонения лобовых частей обмотки, уложенной при монтаже, по высоте и зазоры в просветах между ними не должны превышать отклонений в остальной части обмотки, уложенной при изготовлении на заводе-изготовителе.

К.4.3.5 Окончательное высотное положение смонтированного статора относительно ротора определяется положением его средней линии, отклонение которой от средней линии ротора не должно превышать 0,5 % высоты активной стали статора.

Примечания - 1. Среднюю линию ротора определяют как среднее арифметическое середины высоты сердечников всех полюсов ротора.

2. Среднюю линию статора определяют как среднее арифметическое середины высоты активной стали всех сегментов статора.

К.4.3.6 Цилиндричность статора, замеренная до опускания ротора, и концентричное расположение ротора в статоре должны обеспечивать равномерную величину воздушного зазора по всей окружности в соответствии с требованиями пункта К.4.2.5 настоящего Приложения.

К.4.3.7 В гидрогенераторах с водяным охлаждением токопроводящих обмоток (статора, ротора) последние должны быть испытаны гидравлическим давлением дистиллята. Порядок и режим испытаний системы водяного охлаждения определяются техническими условиями и инструкцией завода-изготовителя.

К.4.4 Подпятники и направляющие подшипники

К.4.4.1 Общая нагрузка на подпятник должна быть распределена между сегментами равномерно. Отклонение нагрузки, приходящейся на каждый сегмент, не должно превышать ±5 %.

К.4.4.2 В смонтированном подпятнике должна быть обеспечена концентричность образующей окружности сегментов относительно диска пяты. Неконцентричность их взаимного положения допускается в следующих пределах:

Диаметр диска пяты, м

Допускаемая неконцентричность, мм

до 1

1,0

от 1 до 2

1,5

от 2 до 3

2,0

от 3 до 4

2,5

К.4.4.3 Фланцевые и стыковые соединения масляных ванн подпятника и подшипников и их крышек должны быть плотными. Протечки масла в местах их соединений не допускаются.

К.4.4.4 Сопротивление изоляции от подшипниковых токов должно быть не ниже 1,0 МОм.

К.4.5 Вспомогательное оборудование гидрогенератора

К.4.5.1 Тормозные домкраты должны быть устойчиво закреплены на своих основаниях, а трущиеся поверхности тормозных колодок установлены в одной горизонтальной плоскости. Отклонение расстояния плоскости трения тормозных колодок до наиболее заниженной части тормозного диска от проектной величины допускается в пределах до 3 мм.

Приложение Л

(рекомендуемое)

Нормы контроля технического состояния гидрогенераторов

Параметры технического состояния

Повреждения

Методы контроля

Допустимые значения параметров

Режим контроля

Принятие решений

Обмотка статора

Сопротивление меди постоянному току

Нарушение паек головок, обрывы элементарных проводников

Измерение сопротивления постоянному току ветвей или фаз

Значения сопротивлений должны быть приведены к одинаковой температуре. Разность сопротивлений фаз не более 2 %, ветвей - не более 5 %. Разность с исходными сопротивлениями не более 2 %

При выводе генератора в ремонт

При недопустимых отклонениях сопротивлений проверяется качество паек головок, методика проверки выбирается ремонтной организацией. При обрыве элементарных проводников дефектный стержень находится методом последовательного деления ветви пополам

Сопротивление изоляции

Глубокие истирания, перегрев, трещины вследствие термомеханических циклов

Измерение сопротивления мегомметром 2500 В. Значения сопротивления отсчитываются через 15 и 60 секунд после начала измерения. Измерение сопротивления изоляции обмоток, непосредственно охлаждаемых дистиллятом, должно производиться после удаления и продувки дистиллята и осушения всего тракта сжатым воздухом.

R60? не менее 10 Мом на 1 кВ номинального линейного напряжения. Коэффициент абсорбции Кабс = R60?/R15? не менее 1,3.

При выводе генератора в ремонт

При снижении сопротивления ниже допустимого принимаются меры по обнаружению и устранению дефекта, в том числе испытания повышенным выпрямленным и переменным напряжением до пробоя изоляции; величины напряжения не должны превышать нормированные. При низком значении коэффициента абсорбции лобовые части должны быть очищены и помыты. Принимаются меры по выявлению глубоких истираний или трещин изоляции лобовых частей. Производится сушка обмотки статора.

Электрическая прочность изоляции, преимущественно лобовых частей обмотки.

Глубокие истирания, перегрев, трещины вследствие термомеханических циклов, загрязнение, увлажнение.

Испытания повышенным выпрямленным напряжением с измерением токов утечки.

Отсутствие или наличие пробоя изоляции. Оценка состояния изоляции производится также по коэффициенту нелинейности:

где: Uнб - наибольшее испытательное напряжение;

Uнм » 0,5Uнб; Iнб, Iнм - значения токов утечки через 60? с момента установления напряжений. КU должен быть не более 3. Рост тока при выдержке напряжения на ступени является признаком дефекта изоляции. Коэффициент нелинейности не учитывается, если токи утечки не превосходят 50 мкА. Выдержка напряжения на ступени допускается, если ток утечки не превышает 250 мкА.

При выводе генератора в ремонт

При пробое изоляции заменяется пробитый стержень (катушка). При больших токах утечки или недопустимом значении коэффициента нелинейности требуется очистка и промывка обмотки с последующей сушкой, принимаются меры по обнаружению и устранению дефектов лобовых частях обмотки и выводных шин.

Электрическая прочность изоляции, преимущественно пазовой части, но также и лобовых частей.

Ниже перечисленные дефекты на последней стадии развития: рыхлость, глубокие истирания, перегрев, трещины вследствие термомеханических циклов, увлажнение, старение.

Испытание повышенным напряжением промышленной частоты величиной 1,7Uн, приложенным к фазе или ветви относительно корпуса и заземлённых других фаз и ветвей в течение 1 мин. Затем напряжение снижается до номинального и выдерживается 5 мин., ведётся наблюдение за короной в лобовых частях.

Отсутствие или наличие пробоя изоляции. Признаком неудовлетворительного состояния изоляции лобовых частей является сосредоточенное свечение жёлтого и красного цвета, дым.

При выводе генератора в ремонт.

При пробое изоляции заменяется стержень (катушка). При наличии разрядов желтого и красного свечения требуется очистка и промывка обмотки с последующей сушкой, принимаются меры по обнаружению и устранению дефекта в лобовых частях обмотки.

Состояние изоляции и токоведущих частей.

Ниже перечисленные дефекты изоляции и токоведущих частей на ранней стадии развития: рыхлость, глубокие истирания, перегрев, трещины вследствие термомеханических циклов, увлажнение, старение изоляции; усталостное разрушение меди, нарушение контактных соединений.

Измерение частичных разрядов в рабочем состоянии генератора и на остановленном генераторе при подаче фазного, но не ниже 6 кВ, напряжения промышленной частоты от постороннего источника. Измерения производятся с применением специальной методики и аппаратуры.

Приведенный уровень частичных разрядов не выше 150 мкВ/м, отсутствие разрядов искрового типа (пазовых разрядов), дуговых разрядов.

В рабочем состоянии генератора непрерывно и при выводе в ремонт.

При превышении критического уровня частичных разрядов требуется замена стержней с изношенной изоляцией. В гидрогенераторах с термореактивной изоляцией при наличии пазовых разрядов требуется уплотнение дефектных стержней в пазах.

Состояние полупроводящего покрытия изоляции.

Обрывы и истирание полупроводящей ленты или лака, повреждение пазовым разрядом.

Обследование извлеченных стержней, измерение мегомметром 2500 В удельного поверхностного сопротивления покрытия, измерение частичных разрядов по пазам статора.

Отсутствие видимых повреждений. Удельное поверхностное сопротивление пазового покрытия должно составлять 104 - 106 Ом, лобового покрытия 108 - 109 Ом.

При выводе генератора в ремонт

При массовом повреждении покрытия вследствие вибрации стержней и пазовых разрядов требуется полная перемотка, в других случаях требуется уплотнение стержней в пазах боковыми волнистыми полупроводящими прокладками. Покрытие лобовых частей следует восстановить.

Физико-механические характеристик и изоляции

Общая или локальная рыхлость; истирание в лобовых и доступных для осмотра пазовых частях, локальные признаки повышенного нагрева; порезы, истирания и другие значительные повреждения.

Осмотр с использованием лупы, эндоскопов, аппаратуры для фотосъёмки. При необходимости осмотр извлеченных верхних стержней (сторон катушек). При осмотре оценивается наличие или отсутствие и степень развития.

Нормированные показатели допустимой степени развития дефектов отсутствуют. Заключение о состоянии изоляции и её пригодности для дальнейшего использования составляется экспертным путем.

При выводе генератора в ремонт

Для принятия решения о работоспособности изоляции назначается экспертная комиссия. При массовых повреждениях изоляции требуется полная перемотка статора.

Температура меди

Перегрев.

Штатный контроль по заложенным термосопротивлениям; испытания на нагревание.

Температура не выше допустимой для данного класса изоляции.

В соответствии с графиком заполнения суточных ведомостей температур; в соответствии с методикой испытаний на нагревание.

Снизить нагрузку генератора до выяснения причины перегрева.

Вибрация лобовых частей

Ослабление бандажных вязок лобовых частей, креплений стержней в пазах, повреждение изоляции.

Вибрационный контроль на гидрогенераторах мощностью более 50 МВт

Вибрация с частотой 100 Гц: работоспособное (удовлетворительно), до 50 мкм; неработоспособное (неудовлетворительно), 50 - 100 мкм; предельное (недопустимо), более 100 мкм

Работоспособное - 1 раз в 4 - 6 лет перед капитальным ремонтом. Неработоспособное, 1 раз в 2 года, до ближайшего планового капитального ремонта. Предельное, не реже 1-го раза в год до выполнения соответствующих ремонтно-профилактических работ.

Неработоспособное - восстановление бандажных вязок лобовых частей, стержней в пазах статора. Предельное - проведение упомянутых мероприятий, ставится вопрос о модернизации системы крепления или замены обмотки

Состояние крепления обмотки и выводных шин.

Истирание изоляции в местах прилегания к элементам крепления.

Оценка крепления обмотки в пазовой части производится на основании осмотров главным образом на выходе из паза и простукиванием пазовых клиньев. Оценка крепления обмотки в лобовых частях производится на основании осмотра и результатам измерения вибрации головок с частотой 100 Гц при номинальной нагрузке.

Экспертная оценка по результатам осмотра.

При вводе генератора в эксплуатацию, перед выводом в ремонт и во время ремонта.

При ослаблении крепления обмотки в пазах требуется уплотнение в пазах и переклиновка. При ослаблении крепления в лобовых частях производится замена вязок (для термореактивной изоляции с применением «препрега»).

При массовом ослаблении крепления и глубоких истираниях изоляции требуется перемотка статора.

Состояние проходных и опорных изоляторов генераторного напряжения

Загрязнение и отпотевание проходных и опорных изоляторов экранированных токопроводов генераторного напряжения после длительного простоя гидрогенератора.

Испытание изоляторов экранированных токопроводов генератор-трансформатор перед пуском номинальным напряжением.

Изоляторы должны выдержать испытание номинальным напряжением.

Перед пуском гидрогенератора после длительного простоя в холодное время года.

В случае перекрытия изоляторов во время испытаний производится их очистка и вентиляция токопроводов горячим воздухом.

Стальные конструкции статора

Радиальная «полюсная» (100 Гц) и низкочастотна я («оборотная» и кратные ей) вибрация сердечника и корпуса.

Ослабление, повреждение системы крепления активной стали сердечника, корпуса к фундаменту вследствие повышенных вибраций.

Вибрационный контроль на работающем агрегате. На остановленном агрегате - осмотр.

Работоспособное (удовлетворительно), до 30 мкм. Неработоспособное (неудовлетворительно), более 30 мкм, начало накопления дефектов. Предельное (недопустимое), более 30 мкм, наличие серьёзных дефектов и повреждений. Работоспособное (удовлетворительно), до 80 мкм; неработоспособное (неудовлетворительно), 80 - 180 мкм, начало накопления дефектов; предельное (недопустимое), более 180 мкм, наличие серьёзных дефектов и повреждений.

Работоспособное - 1 раз в 4 - 6 лет, перед капитальным ремонтом. Неработоспособное - 1 раз в год, до выполнения ремонтных работ. Предельное - 1 раз в полгода, до выполнения ремонтных работ. Контроль после капитального ремонта выполняется в случаях реализации рекомендованных восстановительных работ.

На гидрогенераторах с разъёмным статором при фиксации неработоспособного и предельного состояний в ближайший ремонт выполняется уплотнение стыков секторов сердечника статора с устранением дефектов и повреждений. Выявление причин повышенных вибраций, не связанных с разуплотнением стыков секторов статора, осуществляется с привлечением сторонних организаций.

Нарушение формы статора

Одностороннее магнитное тяжение. Неравномерный нагрев сегментов генераторных подшипников

Контроль на работающем агрегате электромагнитным методом; метрические измерения на остановленном агрегате при ремонте.

Dс - степень искажения формы статора; v - температура сегментов направляющих подшипников. Работоспособное (удовлетворительно):

Dс < 5 %; v < vном

Неработоспособное (неудовлетворительно):

Dс = (5 - 15); v < vном +5).

Предельное (недопустимое):

Dc > 15; v > (vном + 10).

Наличие серьёзных дефектов и повреждений.

Работоспособное - 1 раз в 4 - 6 лет, перед капитальным ремонтом. Неработоспособное - 1 раз в год, до выполнения ремонтных работ. Предельное - 1 раз в полгода, до выполнения ремонтных работ. Контроль после капитального ремонта выполняется в случаях реализации рекомендованных восстановительных работ.

При фиксации неработоспособного и предельного состояний в ближайший ремонт выполняется коррекция формы статора, относительного положения ротора и статора с устранением возможных дефектов и повреждений.

Потери и нагрев сердечника.

Массовое нарушение лаковой изоляции шихтованных листов активной стали сердечника статора.

Испытания на потери и нагрев методом кольцевого намагничивания. Сердечники статоров гидрогенераторов с косвенной системой охлаждения обмоток испытываются 90 мин. при индукции 1,0 ± 0,1 Т. При непосредственном охлаждении обмотки статора, испытание проводится 45 мин. при индукции 1,4 ± 0,1 Т. Определяются удельные потери Р. Если индукция Висп отлична от указанных значений, то продолжительность испытаний tисп и удельные потери уточняются по формулам:

tисп = 90 (1,0/Висп)2 или

tисп = 45 (l,4/Bисп)2;

Р1,0 = Рисп (1,0/Висп)2 или

Р1,4 = Рисп(1,4/Висп)2,

где: Рисп - удельные потери, определенные по результатам измерений при испытании.

Оценка состояния сердечника производится по результатам измерения нагрева за время испытания и по величине удельных потерь. Наибольшее повышение температуры 25 °С, наибольшая разность нагревов различных зубцов не более 15 °С. Удельные потери в стали не должны превышать их исходные значения при заведомо хорошем состоянии сердечника более чем на 10 %. Если исходных значений нет, то удельные потери не должны быть больше значений, нормированных для различных марок стали.

Проводятся во время ремонта генератора при демонтаже ротора.

При превышении нагревов или удельных потерь относительно допустимых значений решение о мерах по устранению превышений и о работоспособности сердечника должно приниматься экспертной комиссией.

Очаги опасного замыкания листов активной стали

Локальные перегревы активной стали и изоляции обмотки статора.

Метод высокочастотного сканирования расточки статора с помощью индуктора, подключённого к генератору синусоидального тока частоты 1,5 кГц, напряжения 30 В и уравновешенной индикаторной схеме. Признаком замыкания является расстройство равновесия схемы и увеличение тока питания индуктора.

Опасность замыкания определяется по результатам градуировки. Зависимость тока индуктора от мощности тепловыделения в месте замыкания практически линейна, поэтому есть возможность оценивать по показанию индикатора расчетную мощность в месте дефекта при рабочих индукциях.

Во время ремонта генератора.

В случае обнаружения очагов с опасной мощностью тепловыделения следует провести испытания сердечника на потери и нагрев при кольцевом намагничивании с большой индукцией (1,0 Т или 1,4 Т) для подтверждения наличия дефекта.

Плотность прессовки пакетов сердечника.

Разрушение пакетов активной стали зубцовой зоны. Повреждение изоляции обмотки статора

Контроль выполняется на остановленном агрегате при выемке ротора или при провороте ротора краном с демонтажем нескольких полюсов.

Оценка по глубине проникновения тарировочного ножа в пакеты сердечника и по результатам осмотра. Работоспособное (удовлетворительно) - глубина проникновения ножа < 5 мм, замечаний нет.

Неработоспособное (неудовлетворительно), > 5 мм, незначительная контактная коррозия. Предельное (недопустимое), > 5 мм, обильная контактная коррозия, повреждения пакетов сердечника, изоляции стержней.

Работоспособное - 1 раз в 4 - 6 лет, во время капитального ремонта.

Неработоспособное - 1 раз в год, до выполнения ремонтных работ.

Предельное - 1 раз в полгода, до выполнения ремонтных работ.

Ремонтно-восстановительные мероприятия проводятся при неработоспособном и предельном состояниях. Устанавливаются немагнитные уплотняющие клинья в ослабленные пакеты активной стали. Устанавливаются «протезы» в разрушенные пакеты. Восстанавливается изоляция стержней обмотки статора.

Нагрев сердечника

Повреждение изоляции обмотки статора.

Испытания на нагревание.

Значения температур, округлённые в большую сторону до 5 °С, не должны превышать определённые при испытании на нагревание генератора при вводе в эксплуатацию.

Производится в нормальных установившихся режимах при испытаниях гидрогенератора на нагревание.

При наличии перегрева принимаются меры по усилению охлаждения статора или снижается допустимая нагрузка генератора

Состояние узлов крепления сердечника к корпусу, корпуса к фундаменту.

Ослабление, повреждение системы крепления активной стали сердечника, корпуса к фундаменту

Вибрационный контроль на работающем и осмотр на остановленном агрегате.

Наличие таких дефектов является недопустимым и требует проведения дополнительных исследований для разработки мероприятий по устранению дефектов и причин их возникновения.

Производится в нормальных установившихся режимах работы генератора и во время ремонта генератора.

Выявленные дефекты устраняются

Стальные конструкции ротора

Нарушение формы ротора.

Повышенная низкочастотная, «оборотная» вибрация статора. Ослабление, повреждение системы крепления активной стали сердечника, корпуса к фундаменту.

Ослабление плотности посадки обода на спицах ротора

Контроль на работающем агрегате электромагнитным методом; метрические измерения на остановленном агрегате при ремонте.

Работоспособное (удовлетворительно), до 80 мкм, Dр ? 3 %.

Неработоспособное (неудовлетворительно) (80 - 180) мкм, 3 < Dр ? 8; начало накопления дефектов.

Предельное (недопустимое), более 180 мкм, Dр > 8; наличие серьёзных дефектов и повреждений

Работоспособное (удовлетворительное) - 1 раз в 4 - 6 лет, перед капитальным ремонтом.

Неработоспособное (неудовлетворительное) - 1 раз в год, до выполнения ремонтных работ. Предельное (недопустимое) - 1 раз в полгода, до выполнения ремонтных работ

Контроль после капитального ремонта выполняется в случаях реализации рекомендованных восстановительных работ.

При фиксации неработоспособного и предельного состояний в ближайший ремонт выполняется коррекция формы ротора с устранением возможных дефектов и повреждений (в том числе излома вала).

Плотность посадки обода на спицах ротора.

«Провисание» обода, разрушение посадочного узла обода на спицах ротора. Ударное взаимодействие обода с тормозными колодками на работающем агрегате.

На остановленном агрегате при ремонте.

При подъёме ротора на тормоза аксиальное перемещение обода относительно остова (спиц) ротора остановленного агрегата не должно превышать 5 - 10 мм.

С учётом результатов контроля низкочастотной («оборотной» и кратных ей) вибраций статора, но не реже 1 раза в 7 - 8 лет.

Горячая расклиновка обода - равномерная при удовлетворительной форме ротора или с учетом необходимости коррекции формы ротора.

Воздушный зазор.

Повышенные низкочастотная («оборотная» и кратные ей), «полюсная» (100 Гц) вибрации статора, одностороннее магнитное тяжение, неравномерный нагрев сегментов генераторного подшипника; ослабление, повреждение системы крепления активной стали сердечника, корпуса к фундаменту.

Контроль на работающем агрегате электромагнитным методом; метрические измерения на остановленном агрегате при ремонте.

Воздушный зазор между статором и ротором в диаметрально противоположных точках не должен отличаться друг от друга более чем на ±20 % от среднего значения, равного их полусумме.

Периодичность в соответствии с оценкой форм статора, ротора.

Выполняются ремонтно-профилактические мероприятия в зависимости от результатов вибрационного контроля, контроля форм статора и ротора.

Обмотка возбуждения и демпферная система

Сопротивление постоянному току обмотки возбуждения.

Нарушение паяных и контактных соединений, трещины меди обмотки возбуждения.

Измерение сопротивления постоянному току. Производится в холодном состоянии гидрогенератора для обмотки возбуждения в целом и для каждого полюса в отдельности или попарно. Сопротивление постоянному току приводится к температуре 15 °С. Кроме того, измеряется переходное сопротивление между катушками полюсов.

Измеренные значения сопротивлений не должны отличаться от исходных при одинаковых температурах более чем на 2 %.

Во время ремонта генератора.

Ревизуются паяные и контактные соединения с целью выявления и устранения их дефектов. В случае трещины меди обмотки дефектный полюс перематывается.

Сопротивление переменному току.

Витковые замыкания в обмотке возбуждения.

Измерение сопротивления обмотки возбуждения переменному току производится при неподвижном роторе. Напряжение промышленной частоты подводится к обмотке каждого полюса или каждой пары полюсов. Величина напряжения определяется из условия 3 В на виток, но не более 200 В. Для сравнения результатов измерения с данными предыдущих измерений необходима идентичность условий: одинаковые напряжения, аналогичное состояние генератора - вставленный или вынутый ротор, разомкнутая или замкнутая накоротко обмотка статора при вставленном роторе.

Отклонение полученных при обследовании результатов от данных предыдущих измерений или от среднего значения измеренных сопротивлений полюсов или пар полюсов не должно превышать 5 %.

Во время ремонта генератора.

При наличии виткового замыкания дефектный полюс перематывается.

Электрическая прочность изоляции

Различные дефекты корпусной изоляции обмотки возбуждения.

Измерение сопротивления изоляции мегаомметром с номинальным напряжением 1000 В, испытания приложенным повышенным напряжением промышленной частоты, осмотр.

Сопротивление изоляции при температуре 10 - 30 °С должно быть не менее 1 Мом. Изоляция должна выдерживать в течение 1 мин. испытательное напряжение промышленной частоты, равное шестикратному номинальному напряжению возбуждения, но не менее 1000 В.

Во время ремонта генератора.

Дефектный полюс перематывается.

Нагрев обмотки

Нарушение паяных и контактных соединений, трещины меди обмотки возбуждения.

Испытания на нагрев по стандартной методике. Средняя температура обмотки определяется методом измерения сопротивления при установившихся по нагреву режимах гидрогенератора, указанных в методике. При осмотре, а также с помощью термоэтикеток или термокрасок определяется наличие локальных недопустимых перегревов паяных соединений на перемычках между обмотками соседних полюсов

Средняя температура обмотки не должна превышать температуру определённую ранее (исходную) при заведомо исправном состоянии генератора, более чем на 5 °С при номинальном токе возбуждения. При этом абсолютное значение средней температуры не должно быть больше допустимых значений для данного класса изоляции.

Во время ремонта генератора.

Ревизуются паяные и контактные соединения с целью выявления и устранения их дефектов. В случае трещины меди обмотки дефектный полюс перематывается.

Локальные дефекты демпферной системы, стальных конструкций полюсов.

Следы недопустимого нагрева стержней демпферной системы, мест их заделки в замыкающие сегменты, перемычек демпферной системы между полюсами, полюсных наконечников;

- наличие изломов или трещин в элементах демпферной системы, стальных конструкциях ротора;

- ослабление расклиновки полюсов на ободе;

- ослабление всех болтовых соединений в зоне полюсов.

Состояние демпферной системы, полюсных наконечников и других стальных элементов ротора оценивается по результатам их осмотра с использованием технических средств.

Наличие таких дефектов является недопустимым и требует проведения дополнительных исследований для разработки мероприятий по устранению дефектов и причин их возникновения

Во время ремонта генератора.

Выявленные дефекты устраняются.

Щеточно-контактный аппарат

Дефекты щеточно-контактного аппарата:

Повышенная вибрация и бой контактных колец.

Выявляются в рабочем режиме гидрогенератора с применением индикатора-микрометра часового типа, а также бесконтактных индикаторов (например, индуктивного типа)

Величина вибрации и боя не нормированы, опасность оценивается на основе опыта эксплуатации.

В рабочем состоянии генератора.

Повышенная вибрация и бой устраняются проточкой колец в допустимых по заводской инструкции пределах. В случае сильной деформации колец требуется их замена.

Снижение сопротивления изоляции контактных колец

Выявляется профилактическими испытаниями. Испытательное напряжение выпрямленное, 0,8 заводского испытательного напряжения.

Величина сопротивления не ниже 1 МОм.

Во время ремонта генератора.

Снижение сопротивления устраняется очисткой и промывкой изоляции. В случае пробоя требуется переизолировка колец.

Загрязнение контактных колец, повышенный износ щеток, ослабление соединения колец с шинами обмотки возбуждения.

Выявляются осмотром.

Состояние оценивается экспертным путем.

В рабочем режиме генератора и во время ремонта.

Загрязнение удаляется очисткой и промывкой колец. При повышенном износе щеток требуется их замена на более твердые. Ослабление контакта с шинами устраняется подтяжкой или заменой токоведущих болтов.

Перегрев контактных колец и щеток.

Выявляются измерением их температуры с помощью дистанционного пирометра или измерением инфракрасного излучения при наличии соответствующей аппаратуры, а также визуально по следам перегрева - цветам побежалости.

Допустимая температура указывается в заводской инструкции.

В рабочем режиме генератора.

Проверяется равномерность распределения тока по щеткам, степень прижатия щеток, состояние поверхности контактных колец и наличие политуры.

Повышенное искрение щеток сопровождает большинство дефектов щеточно-контактного аппарата.

Выявляется осмотром и при помощи специальной аппаратуры регистрации повышенного искрения.

Точные критерии оценки по результатам осмотра не устанавливаются. При применении специальной аппаратуры оценка производится согласно инструкции по ее эксплуатации.

В рабочем режиме генератора.

В первую очередь проверяется достаточность прижатия искрящих щеток к кольцам. Затем проверяется наличие всех выше перечисленных дефектов.

Приложение М

(обязательное)

Методические указания по проведению осмотров гидрогенераторов

М.1 Введение

Настоящее Приложение устанавливает перечень конструктивных частей гидрогенератора, подлежащих осмотру, методы и приемы осмотра, признаки, параметры и критерии их исправного состояния, перечень возможных отклонений от исправного состояния.

Периодичность осмотров определяется в установленном порядке. Осмотры могут быть приурочены к плановым ремонтам, а также могут быть проведены в объеме, определяемом техническим руководителем ГЭС, после работы гидрогенератора в нештатном (опасном) режиме и/или его повреждений при работе.

Периодичность осмотров может быть изменена на основании результатов предыдущих осмотров и/или освидетельствований, а также в зависимости от состояния конкретного гидрогенератора.

М.2 Порядок составления заключения о техническом состоянии гидрогенератора по результатам осмотра.

М.2.1 Заключение о техническом состоянии гидрогенератора по результатам осмотра составляет комиссия, образованная техническим руководителем ГЭС.

М.2.2 В состав комиссии целесообразно включать:

- уполномоченных представителей подразделений ГЭС,

- специалистов ГЭС, обслуживающих гидрогенераторы,

- представителей (специалистов) привлекаемой ремонтной организации.

В комиссию могут быть введены по согласованию представители завода-изготовителя и других специализированных организаций.

М.2.3 В заключении и приложениях к нему должны содержаться следующие данные:

- технические характеристики: тип гидрогенератора, мощность, напряжение, завод-изготовитель, тип обмотки, тип изоляции, число стержней (катушек);

- дата ввода в эксплуатацию и наработка;

- сведения по повреждениям в работе: даты повреждений, причины, места повреждений, объем ремонта;

- результаты осмотра конструктивных частей гидрогенератора, перечень которых приведен ниже, с указанием обнаруженных отклонений от исправного состояния и обоснования необходимости, объема и сроков ремонта.

М.3. Оформление заключения о техническом состоянии гидрогенератора по результатам осмотра.

Заключение подписывают все члены комиссии и утверждает технический руководитель ГЭС

М.4. Конструктивные части гидрогенераторов, подлежащие осмотру.

М.4.1 Сердечник и корпус статора.

Элементы конструкции, подлежащие осмотру

Признаки неисправного состояния

Описание признака

Способ осмотра

Активная сталь сердечника со стороны спинки и расточки

Контактная коррозия активной стали и клиньев

Интенсивность слабая - крапинки или неравномерный налет красноватого оттенка, обильная - сплошные участки налета густого кирпичного цвета. Оценка площади пораженной поверхности (%) на обследуемом участке

Визуальный

Местные перегревы

Характерные пятна или цвета побежалости, их примерная площадь

Визуальный

«Волна» пакетов

Протяженность волны, ее амплитуда

Визуальный с помощью линейки

Смещение листов в пакетах

Число смещенных листов, длина выступающей части

Визуальный с помощью линейки или штангенциркуля с ценой деления 0,1 мм

Ослабление прессовки и распушивание

Глубина проникновения специального контрольного ножа

Специальный контрольный нож с нанесенными делениями

Стыковые зоны сердечника и корпуса

Выпучивание пакетов активной стали - «домики»

Число «домиков», их высота

Визуальный с помощью линейки с ценой деления 1 мм

Относительное смещение пакетов активной стали

Число смещенных пакетов, величина смещения

Визуальный с помощью линейки с ценой деления 1 мм

Ослабление затяжки гаек стяжных болтов стыковых плит

Наличие трещин в сварных швах, стопорящих гайки; угол дозатяжки гаек

Визуальный, гаечный ключ

Износ (истирание) изоляционных прокладок в стыках секторов

Наличие продуктов истирания прокладок - «пыли» желто-серого цвета или кусочков прокладки

Визуальный

Появление или увеличение зазоров в стыках секторов

Величина зазоров в стыках, соотнесенная с монтажными или ремонтными данными

Визуальный с применением набора щупов

Узлы крепления активной стали сердечника к корпусу

Трещины и обломы клиньев и их «ласточкиных хвостов»

Число трещин в клиньях, их размеры или сечение облома. Цвет металла в изломе (тусклый, светлый)

Визуальный с помощью лупы, линейки и набора щупов

Обломы заплечиков «ласточкиных хвостов» листов активной стали

Число единичных обломов или длина (вдоль клина) массового повреждения

Визуальный

Трещины и обрывы сварных швов приварышей

Число швов с обрывами или с трещинами, размеры трещин

Визуальный с помощью лупы, линейки с ценой деления 1 мм

Вентиляционные распорки

Ослабление крепления и смещение

Подвижность при шевелении рукой

Ощупыванием

Стяжные шпильки сердечника

Трещины и обрывы

Цвет металла в изломе (тусклый, светлый). Размер трещин

Визуальный с помощью лупы, линейки с ценой деления 1 мм

Ослабление затяжки гаек

Состояние стопорных шайб, угол дозатяжки гаек

Визуальный, гаечный ключ

Нажимные гребенки

Перекос

Примерный угол перекоса или разница в высоте краев гребенки

Визуальный с помощью лупы, линейки с ценой деления 1 мм

Излом, трещина, изгиб нажимных пальцев

Число дефектных нажимных пальцев, характер изгиба или излома

Визуальный

Ослабление затяжки отжимных болтов

Угол дозатяжки болтов

Визуальный, гаечный ключ

Элементы крепления корпуса статора к фундаменту

Натиры и выползание штифтов фланца корпуса

Длина натиров или выползшей части

Визуальный с помощью лупы, линейки с ценой деления 1 мм

Обрыв стопорных швов и ослабление затяжки гаек анкерных болтов крепления фланца корпуса к фундаментной плите

Наличие трещин в стопорных швах и угол дозатяжки гаек

Визуальный, гаечный ключ

Выкрашивание бетона у фундаментной плиты и фланца корпуса

Интенсивность выкрашивания

Визуальный

Элементы крепления верхней крестовины

Обрыв стопорных швов и ослабление затяжки гаек

Наличие трещин в стопорных швах и угол дозатяжки гаек

Визуальный, гаечный ключ

Натиры и выползание штифтов

Длина натиров или выползшей части

Визуальный с помощью лупы, линейки с ценой деления 1 мм

Воздухоохладители

Утечка воды из трубок

Интенсивность протечки

Визуальный и наощупь

М.4.2 Обмотка статора.

Элементы обмотки

Признаки неисправного состояния

Критерий исправного состояния

Способ обследования

Покровная эмаль лобовых частей перемычек, соединительных шин бандажных колец

Повреждение эмали на лобовых частях перемычек, соединительных шинах, бандажных кольцах

Отсутствие повреждений (отслоение, выкрашивание и т.п.)

Визуальный

Покровная стеклолента лобовых частей

Разрывы ленты

Отсутствие разрывов ленты

Визуальный

Полу проводящее покрытие

Разрывы асболавсановой ленты

Отсутствие разрывов асболавсановой ленты

Визуальный, в пазовой части с применением эндоскопа

Следы коронирования

Отсутствие следов коронирования в виде белесых пятен

Слюдосодержащая изоляция лобовых частей, бандажных колец, перемычек и соединительных шин

Истирание термореактивной изоляции

Отсутствие истирания

Визуальный

Смятие и истирание термопластичной изоляции (микалентной компаундированной, гильзовой и т.п.)

Глубина смятия (истирания) не более 1,0 мм

Визуальный

Изломы, забоины, разрывы, проколы

Отсутствие изломов, забоин, разрывов и проколов изоляции лобовых частей, бандажных колец, перемычек и соединительных шин

Визуальный

Вспухание МКИ на выходе из пазов

Толщина стержня (катушки) на выходе из паза не превышает ширину паза более, чем на 20 %. Число стержней (катушек) не нормируется

Штангенциркуль с ценой деления 0,1 мм

Изоляция паяных соединений

Почернение, вспухание, осыпание, обгорание изоляции (коробок головок)

Отсутствие внешних признаков повреждения

Визуальный

Пазовые клинья

Ослабление клиньев

Отсутствие выпавших, расколотых клиньев

Визуальный

Зазор между стыками клиньев не должен превышать 2 мм

Линейка с ценой деления 1 мм

Отсутствие несовпадения вентиляционных вырезов в клиньях с вентиляционными каналами

Визуальный

Отсутствие ослабления установки концевых клиньев

Молоток малый 0,3 - 0,5 кг

Ослабление установки рядовых клиньев должно быть не более 20 % длины паза

Молоток малый 0,3 - 0,5 кг

Пазовые прокладки

Выдвижение из паза в зону лобовых частей

Выдвижение из паза на длину не более 30 мм

Визуальный, линейка с ценой деления 1 мм

Кронштейны лобовых частей

Смещение кронштейнов от руки

Отсутствие смещения

Визуальный

Бандажные кольца

Отход бандажного кольца от кронштейна или от лобовой части обмотки

Отсутствие зазора между кольцом и кронштейном, между кольцом и лобовой частью

Визуальный

Дистанционные прокладки, распорки, колодки

Выпавшие прокладки, распорки, колодки

Отсутствие выпавших прокладок, распорок, колодок

Визуальный

Шнуровые бандажи

Разорванные бандажи

Отсутствие разорванных бандажей

Визуальный

Ослабленные бандажи

Отсутствие ослабленных бандажей

Визуальный

Фторопластовые шланги

Сплошное загрязнение внутренних поверхностей

Визуальный, с помощью переносной лампы

Забоины, царапины, перегибы

Визуальный

Лобовые части и соединительные шины схемы

Запыление

Не нормируется

Визуальный

Замасливание:

- аэрозольная форма;

- капельная форма

Не нормируется

Визуальный

Загрязнение

Не нормируется

Визуальный

Увлажнение, наличие капельной воды

Не нормируется

Визуальный

М.4.3 Ротор.

Элементы конструкции

Признаки неисправного состояния

Описание признака

Способ обследования

Полюса

Нарушение приварки клиньев

Число треснувших швов, цвет металла в трещине

Визуальный

Выползание клиньев

Наличие натиров и рисок на клиньях, их длина. Звук при пробной забивке кувалдой (глухой или звонкий)

Визуальный, линейка с ценой деления 1 мм. На слух при пробной забивке

Контактная коррозия на клиньях

Интенсивность коррозии. Примерная площадь на клине и прилегающих частях обода и полюса

Визуальный

Местные перегревы активной стали

Характерные пятна или цвета побежалости, их примерная площадь

Визуальный

Повреждение корпусной изоляции обмотки

Обугливание изоляции. Место и степень обугливания

Визуальный

Наличие токопроводящих мостиков

Визуальный

Повреждение витковой изоляции обмотки

Механическое повреждение изоляции витков. Место и характер повреждения

Визуальный

Термическое повреждение изоляции витков. Место и характер повреждения

Визуальный

Наличие капель оловянно-свинцового припоя между витками обмотки, число капель

Визуальный

Замасливание и запыленность обмотки. Место и площадь

Визуальный

Обод

Нарушение приварки клиновых шпонок

Число треснувших швов, цвет металла в изломе

Визуальный с помощью лупы

Выползание клиновых шпонок

Наличие натиров и рисок на клиньях, их длина. Звук при пробной забивке кувалдой (глухой или звонкий)

Визуальный, линейка с ценой деления 1 мм. На слух при пробной забивке

Контактная коррозия на клиновых шпонках

Интенсивность коррозии. Примерная площадь на клиновой шпонке и прилегающих частях обода и спицы.

Визуальный

Спицы

Трещины и сколы заплечиков клиновой полосы

Число повреждений на каждой спице. Характер излома

Визуальный с помощью лупы

Ослабление затяжки гаек

Наличие трещин в стопорных швах, угол затяжки гаек

Визуальный, гаечный ключ

Натиры и выползание штифтов

Длина натиров или выползшей части

Визуальный, линейка с ценой деления 1 мм

Токоподвод

Повреждения изоляции

Локальные или общие повреждения, их характер (старение, механическое повреждение)

Визуальный

Нарушение целости элементов крепления

Число поврежденных или ослабленных зажимов

Визуальный

Контактные кольца

Неравномерность износа

Величина неравномерности

Щуп, лекальная линейка

Следы эрозии

Число участков со следами эрозии, их площадь или процентное соотношение

Визуальный

Подгары

Число участков с подгарами, их площадь или процентное соотношение

Визуальный

Матовая поверхность

Число участков с матовой поверхностью, их площадь или процентное соотношение

Визуальный

Контактные соединения обмотки возбуждения и демпферной обмотки

Трещины и изломы перемычек обмоток возбуждения и их креплений

Число поврежденных пластин в перемычке, примерные размеры трещины или сечение излома, цвет металла в изломе

Визуальный с помощью лупы

Трещины и изломы соединений демпферной обмотки

Число поврежденных пластин в перемычке, примерные размеры трещины или сечение излома, цвет металла в изломе

Визуальный с помощью лупы

Нарушение крепления и контровки межполюсных и демпферных соединений

Степень ослабления крепления: сильная - при взаимном перемещении сочленяемых деталей, слабая - при ослаблении затяжки гаек

Визуальный, гаечный ключ

Перегревы перемычек обмоток возбуждения

Характерные пятна и цвета побежалости, их примерная площадь. Потеки припоя

Визуальный

Перегревы соединений демпферной обмотки

Характерные пятна и цвета побежалости, их примерная площадь. Потеки припоя

Визуальный

M.5 Формуляры регистрации дефектов и повреждений.

М.5.1 Сердечник и корпус статора.

Обнаруженные при осмотре признаки неисправного состояния заносятся в таблицу рекомендуемой формы:

Название ГЭС, номер генератора, дата осмотра

№№ п/п

Наименование признаков неисправного состояния

Место обнаружения дефекта

Оценка признака или его описание

сектор

клин

паз (охладитель)

пакет

1

2

3

4

5

6

7

В таблице помимо наименования признака (графа 2) указывают:

- место обнаружения признака: в графе 3 номер сектора по заводской маркировке, в графе 4 номер клина (нумерация клиньев принимается сквозной в каждом секторе - по или против часовой стрелки, что указывается в примечаниях к формулярам), в графе 5 номер паза или охладителя (в случае осмотра со стороны расточки указывается номер паза; если осмотр производится со стороны спинки, то указывается номер охладителя, ближайшего к месту обнаружения дефекта), в графе 6 номер пакета активной стали (нумерация пакетов принимается сверху, либо снизу сердечника, что указывается в примечаниях к формулярам);

- оценка признака или его описание в графе 7.

В графу 2 таблицы заносятся следующие признаки неисправного состояния:

1. Контактная коррозия активной стали и клиньев

2. Местные перегревы активной стали

3. «Волна» пакетов активной стали

4. Смешение листов в пакетах активной стали

5. Ослабление прессовки и распушивание активной стали

6. Выпучивание пакетов активной стали - «домики»

7. Относительное смещение пакетов активной стали

8. Ослабление затяжки гаек стяжных болтов стыковых плит

9. Износ (истирание) изоляционных прокладок в стыках секторов

10. Появление или увеличение зазоров в стыках секторов

11. Трещины и обломы клиньев и их «ласточкиных хвостов»

12. Обломы заплечиков «ласточкиных хвостов» листов активной стали

13. Трещины и обрывы сварных швов приварышей

14. Ослабление крепления и смещение вентиляционных распорок

15. Трещины и обрывы стяжных шпилек сердечника

16. Ослабление затяжки стяжных шпилек сердечника

17. Перекос нажимных гребенок

18. Излом, трещина, изгиб нажимных пальцев

19. Ослабление затяжки отжимных болтов нажимных гребенок

20. Натиры и выползание штифтов фланца корпуса

21. Обрыв стопорных швов и ослабление затяжки гаек анкерных болтов и болтов крепления фланца корпуса к фундаментной плите

22. Выкрашивание бетона у фундаментной плиты и фланца корпуса

23. Обрыв стопорных швов и ослабление затяжки гаек болтов верхней крестовины

24. Натиры и выползание штифтов верхней крестовины

25. Утечка воды из трубок воздухоохладителей

М.5.2 Обмотка статора.

Рекомендуемая форма таблицы:

Название ГЭС, номер генератора, дата осмотра

№№ п/п

Элементы обмотки статора, имеющие дефекты

Число неисправных элементов

Верхняя лобовая часть

Пазовая часть

Нижняя лобовая часть

1

2

3

4

5

В графе 2 таблицы перечисляются следующие элементы обмотки статора:

1. Лобовые части и перемычки с повреждением покровной эмали.

2. Лобовые части и перемычки с разрывом покровной стеклоленты.

3. Лобовые части с разрывом полупроводящей ленты.

4. Лобовые части с истиранием или смятием слюдосодержащей изоляции.

5. Лобовые части с изломами, забоинами, разрывами, проколами изоляции.

6. Стержни с МКИ, вспухшие более, чем на 20 %.

7. Паяные соединения, имеющие термическое повреждение изоляции.

8. Ослабленные пазовые клинья.

9. Прокладки, выступающие из пазов.

10. Ослабленные кронштейны.

11. Места отхода бандажных колец от кронштейнов или от лобовых частей обмотки.

12. Выпавшие дистанционные прокладки.

13. Разорванные шнуровые бандажи.

14. Запыление лобовых частей.

15. Форма замасливания лобовых частей (аэрозольная, капельная).

16. Загрязнение лобовых частей и его цвет.

17. Наличие капель воды на лобовых частях

18. Фторопластовые шланги с загрязнением внутренних поверхностей

19. Фторопластовые шланги с механическими дефектами

М.5.3 Ротор.

Рекомендуемая форма таблицы:

Название ГЭС, номер генератора, дата осмотра

№№ п/п

Наименование признаков неисправного состояния

Место обнаружения

Оценка признака или его описание

№ полюса

№ спицы

В графе 2 таблицы перечисляются следующие признаки неисправного состояния:

1. Нарушение приварки клиньев полюсов

2. Выползание клиньев полюсов

3. Контактная коррозия на клиньях полюсов

4. Местные перегревы активной стали полюсов

5. Повреждение корпусной изоляции обмотки

6. Повреждение витковой изоляции обмотки

7. Нарушение приварки клиновых шпонок обода

8. Выползание клиновых шпонок обода

9. Контактная коррозия на клиновых шпонках обода

10. Трещины и сколы заплечиков клиновой полосы остова

11. Ослабление затяжки гаек крепления спицы

12. Натиры и выползание штифтов спицы

13. Повреждения изоляции токоподвода

14. Нарушение целости элементов крепления токоподвода

15. Неравномерность износа контактных колец

16. Следы эрозии на контактных кольцах

17. Подгары на контактных кольцах

18. Матовая поверхность контактных колец

19. Трещины и изломы перемычек обмоток возбуждения и их креплений

20. Трещины и изломы соединений демпферной обмотки

21. Нарушение крепления и контровки межполюсных и демпферных соединений

22. Перегревы перемычек обмотки возбуждения

23. Перегревы соединений демпферной обмотки

Приложение Н

(обязательное)

Методические указания по контролю нагрева паяных соединений лобовых частей обмоток статора гидрогенераторов с помощью термоиндикаторных этикеток

Н.1 Настоящее Приложение устанавливает объем и порядок контроля состояния паек лобовых частей обмотки статора гидрогенератора с косвенным воздушным охлаждением, мощностью 20 МВт и выше путем измерения температуры на поверхности лобовых частей обмотки вблизи головок.

Контроль паяных соединений является сложной технической задачей по следующим причинам:

обмотка (токоведущие части) находится под высоким напряжением; изоляция головок, как правило, неоднородна и величина теплоперепада от пайки до поверхности изоляции зависит как от конструкции изоляции, так и от ее индивидуального исполнения;

особенности конструкции гидрогенераторов не дают возможности контролировать температуру всех головок обмотки какими-либо бесконтактными методами - например, методом оптической пирометрии.

Для контроля паяных соединений разработан метод косвенной оценки температуры паяного соединения по уровню нагрева поверхности изоляции лобовой дуги стержня вблизи головки, что обеспечивает стабильность измерений и возможность контроля каждого паяного соединения головок как стержневых, так и катушечных обмоток.

Эксплуатационному персоналу ГЭС следует применять настоящее Приложение для организации периодического контроля состояния паяных соединений лобовых частей обмотки статора генератора для предотвращения повреждений и отказов в работе путем своевременного выявления дефектных паек и их ремонта.

Н.2 Осуществлять контроль состояния паяных соединений лобовых частей обмоток статора гидрогенераторов следует через полгода и после первого года эксплуатации вновь введенных генераторов, а также генераторов, на которых проводились ремонтные работы, связанные с перепайкой головок лобовых частей. В дальнейшем проверку состояния паек головок лобовых частей обмотки статора генераторов, которые находятся в эксплуатации менее 10 лет, следует производить один раз в 4 года, а более 10 лет - один раз в 2 года.

Н.3 В качестве термоизмерительных устройств используются термоэтикетки (ТЭ), которые, являясь необратимыми приборами, обладают «памятью» т.е. фиксируют максимальную температуру поверхности, на которой они установлены, что позволяет обнаружить недопустимый нагрев путем осмотра при любых плановых (или внеплановых) остановках гидрогенератора.

ТЭ могут применяться не только при проведении испытаний, но и для эксплуатационного контроля температуры паяных соединений.

Н.4 Специальные высокоточные термоиндикаторные этикетки (ТЭ) с липким удерживающим слоем представляют собой многоэлементные измерители температуры поверхности, на которой они установлены и являются измерителями температуры одноразового использования обеспечивающими фиксацию температуры с точностью 1 - 3 °С в пределах дискретности ряда располагаемых термоиндикаторов плавления.

ТЭ состоят из специальной термоиндикаторной бумаги (теплопроводящая бумага черного цвета с термочувствительными метками из термоиндикаторов плавления), защищенной с двух сторон липкой теплостойкой лавсановой пленкой. Нижняя пленка защищена антиадгезионной технологической бумагой, сохраняющей работоспособность липкого слоя при хранении и удаляемой при наклейке ТЭ. Верхняя пленка обеспечивает герметичность ТЭ и позволяет применять их в условиях замасливания (брызги, пары масла) и влияния влаги.

Срабатывание ТЭ наблюдается очень четко: до срабатывания термочувствительная метка имеет белый или окрашенный цвет (в зависимости от применяемого термоиндикатора), после срабатывания - метка становится черной без градаций по цвету.

Н.5 Конструкция и применяемые материалы обеспечивают работоспособность (ресурс) ТЭ не менее 10000 часов. В течение этого периода сохраняется точность их срабатывания даже при воздействии температуры всего на 10 °С ниже температуры срабатывания. Замена ТЭ по истечении 10000 часов на новые производится по усмотрению эксплуатационного персонала.

Н.6 В процессе изготовления ТЭ при их градуировке учитывается теплоперепад в конструктивных элементах ТЭ между поверхностью исследуемого узла и термочувствительной краской. Таким образом ТЭ надежно контролируют температуру тех узлов, на которые они наклеены.

Выпускаемый промышленностью ассортимент термокрасок, на основе которых изготовляются ТЭ, позволяет получить ТЭ на следующие значения температур: 60, 70, 80, 95, 105, 115, 125, 130, 137, 142, 155 °С.

Н.7 Методика контроля предусматривает предварительное определение теплоперепада на участке от паяного соединения до места установки ТЭ. Теплоперепад, определенный испытаниями на одном гидрогенераторе, может быть распространен на однотипные гидрогенераторы данной ГЭС при условии одинаковых технологии и материалов изолировки головок при изготовлении, монтаже и ремонтах, одинаковых сроках эксплуатации (т.е. одинакового старения изоляции). В случае различия в технологии выполнения работы и используемых материалов необходимо определять теплоперепады на каждом гидрогенераторе. Учитывая процессы старения изоляции и возможное изменение ее теплопроводности, целесообразно проверять теплоперепад один раз в 3 - 4 года.

Н.8 Определение теплоперепада производят при помощи термопар, устанавливаемых непосредственно на пайке (зачеканкой головки термопары в отверстие, высверленное в ее монолите) и лепестковых термопар, наклеиваемых вблизи головки лобовой части стержня на монолитной изоляции (т.е. за пределами изоляционной коробочки - между первой и второй бандажными вязками). Там же (на расстоянии не более 2 см) для сопоставления результатов измерений наклеиваются термоэтикетки. Термопары защищаются от обдува по стандартной методике - одним слоем фланели, размером 2?2 см.

На стержневых обмотках термопары устанавливаются выборочно на пяти верхних и пяти нижних головках; на катушечных обмотках устанавливается не менее десяти термопар (на верхних головках). Для установки термопар желательно выбирать «нулевые» и (или) близкие к ним по потенциалу стержни. Вывод концов от термопар осуществляется, как правило, из-под верхней рифленки в удобное для наблюдений место.

В качестве термопар обычно используют пару медь-константан, отградуированную индивидуально в лабораторных условиях.

Схема измерений представлена на рис. 1, а эскиз оснастки лобовых частей термопарами и термоэтикетками - на рис. 2.

Н.9 В качестве измерителя э.д.с. термопар используются цифровые милливольтметры с высоким входным сопротивлением (на пределе 0 - 20 мВ - не менее 10 МОм) и подавлением на входе симметричных помех нормального вида не менее 60 дБ, класса точности 0,2 - 0,5 (например, Ф-30, Щ-300 или Щ-4316). При этом электропитание милливольтметра осуществляется через разделительный трансформатор.

Холодный спай компенсационной схемы измерения термостатируется в термосе с водой или маслом. Температура воды (или масла) контролируется лабораторным ртутным термометром с ценой деления 0,1 °С.

Н.10 Испытания на нагревание проводятся в режиме 3-фазного К.З. при номинальном значении тока статора и стабильной температуре входящего охлаждающего воздуха. Испытания проводятся до наступления установившегося теплового состояния генератора.

Н.11 Определенный в испытаниях теплоперепад (Dv) на участке от пайки до места установки термоиндикатора служит для получения критерия оценки состояния пайки. При этом за величину теплоперепада принимается его максимальное значение, определенное отдельно по верхним и нижним лобовым частям.

Н.12 После демонтажа термопар восстанавливается изоляция головок лобовых дуг заливкой в высверленные отверстия эпоксидной смолы с наполнителем (слюдинитовая крошка или кварцевый песок).

Н.13 При проведении испытаний должны соблюдаться все требования правил техники безопасности при работе в электроустановках с напряжением выше 1000 В.

Н.14 После определения теплоперепадов на нескольких паяных соединениях полное обследование состояния паяных соединений обмотки статора гидрогенератора следует проводить в следующем порядке:

- в зависимости от конструктивного выполнения гидрогенератора проводят в необходимом объеме его частичную разборку для обеспечения доступа к лобовым частям обмотки статора; на все стержни обмотки устанавливают ТЭ: для стержневых обмоток - на верхних и нижних лобовых частях, для катушечных - только в верхней части обмотки, где есть пайки;

- производят сборку гидрогенератора, включение его в сеть и проведение теплового режима при номинальной нагрузке; указанную нагрузку выдерживают до наступления установившегося теплового состояния генератора, которое контролируют по системе штатного контроля;

- после проведения нагрузочного режима генератор останавливают для осмотра ТЭ с фиксацией максимального значения температуры на исследуемых стержнях;

- используя полученные данные о величине теплоперепада, определяют уровни нагрева паек:

vп = Dv + vтэ,

где, vп - температура паяного соединения;

Dv - максимальное значение теплоперепада на участке пайка-место установки ТЭ, отдельно для верхних и нижних лобовых частей обмотки;

vтэ - температура сработавшего элемента ТЭ.

Выделяются стержни, нагретые выше предельно-допустимых значений, и даются рекомендации по ремонту (перепайке) головок. Согласно ГОСТ 8865-93 длительно допустимая температура термореактивной изоляции класса В на лобовых частях обмотки статора гидрогенератора у меди не должна превышать 130 °С, а изоляции класса F - 155 °С.

Н.15 Результаты первичного обследования являются базовыми для сравнения с данными последующего контроля, что в дальнейшем дает возможность проследить динамику нагревов паяных соединений.

Н.16 При массовом срабатывании ТЭ, обнаруженном при последующих контрольных осмотрах, учитывая, что в процессе эксплуатации имело место общее повышение температуры обмотки из-за возможной перегрузки генератора, следует произвести выборочное вскрытие головок и оценить необходимость их перепайки.

После контрольных осмотров все ТЭ со сработавшими метками заменяют новыми.

Н.17 Перед установкой ТЭ на контролируемые узлы необходимо выбрать плоский, гладкий не имеющий заусенцев, бугров или вмятин участок поверхности изоляции или обработать место установки, сравняв все неровности, чтобы осуществить плотное, без воздушных прослоек, прилегание термочувствительного элемента всей его поверхностью к исследуемому узлу. Это обеспечит оптимальную чувствительность и точность срабатывания ТЭ и исключит погрешность в измерении температуры из-за теплоперепада в воздушной прослойке между поверхностью объекта и ТЭ.

Выбранную поверхность необходимо тщательно промыть растворителем (№ 646, № 647, ацетоном или их аналогами), а затем спиртом. В случае значительного увлажнения спирта или его отсутствия можно ограничиться двукратной промывкой растворителем.

За технологический язычок с ТЭ удаляют антиадгезионную бумагу, защищающую липкий удерживающий слой. Липким слоем ТЭ плотно прижимают к месту установки и разглаживают на нем. Для обеспечения более надежного прижатия целесообразно использовать резиновый ролик (рис. 3). Прикатывание осуществляют от середины ТЭ к периферии.

Установленная таким образом ТЭ обеспечивает достоверный контроль температуры объекта, в том числе в условиях капельного воздействия влаги и масла.

Н.18 Установка ТЭ на контролируемую поверхность должна проводиться при окружающей температуре не ниже +15 °С, поскольку при более низких температурах липкий удерживающий слой не обеспечивает достаточную начальную адгезию к поверхности.

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 1. схема измерения температуры паек обмотки статора гидрогенератора при помощи термопар

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 2. схема установки термопар (ТП) и термоэтикеток (ТЭ) на лобовых частях обмотки статора гидрогенератора.

СТО 17330282.27.140.001-2006 Гидроэлектростанции. Методики оценки технического состояния основного оборудования. Книга 2

Рис. 3. Ролик для прикатывания термоЭтикеток.

Условные обозначения:

• - термопары из меди

х - термопары на поверхности изоляции

- - термоиндикаторные этикетки

Приложение П

(обязательное)

Методические указания по проведению эксплуатационных испытаний гидрогенераторов на нагревание при штатных режимах

П.1 Общая часть

Испытания гидрогенератора на нагревание должны производиться не позднее чем через 6 месяцев после его ввода в эксплуатацию. В дальнейшем в период эксплуатации периодически (один раз в 10 лет) проводят контрольные испытания на нагревание при одном-двух режимах работы. Испытания на нагревание проводят также после полной замены обмотки ротора или статора, или реконструкции системы охлаждения. Гидрогенераторы мощностью до 12 МВт можно не испытывать.

В настоящем Приложении приведены рекомендации по проведению эксплуатационных испытаний на нагревание в целях получения характеристик нагревания генератора, выяснения их соответствия требованиям стандартов и техническим условиям поставки и определения допустимых в эксплуатации нагрузок. В